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Preface

The field of modern computing sees a continuing trend towards increasingly complex, parallel and
heterogeneous architectures as well as distributed and dynamic applications. These developments
call for new approaches to design and operate systems that are capable of dealing with uncertainty
and changing behaviour. Self-awareness is an emerging field of research in computing that considers
systems and applications that gather and maintain information about their current state and
environment, reason about their behaviour, and adapt themselves if necessary.

Reconfigurable computing systems, such as the ones using FPGAs, are capable of delivering high
performance and efficiency combined with flexibility, and research in reconfigurable applications is
well established. We are, however, interested in further reaching applications of reconfigurability
to address the challenges mentioned above. Properties such as self-organisation, self-optimisation
or self-healing can act as a means to improve flexibility, performance or reliability of applications
targeting reconfigurable hardware. Self-awareness extends this line of research and includes aspects
such as reasoning, learning and intelligence to a run-time adaptive system.

The Workshop on Self-Awareness in Reconfigurable Computing Systems (SRCS) was created
to bring together researchers who are active in this field, present their current work, and share
their concepts and visions of self-aware systems. The topics of interest for this workshop are:

• Concepts and foundations of self-aware systems.

• Architectures, control, instrumentation and infrastructure for self-aware systems.

• Algorithmic approaches for self-awareness.

• Tools for engineering self-aware systems.

• Advanced autonomous and self-adaptive systems.

• Self-awareness and adaptation in heterogeneous and distributed systems.

• Run-time techniques for adaptive behaviour, including dynamic reconfiguration.

• Applications using self-awareness or self-adaptivity.

• Emergence of self-awareness in adaptive systems.

The second edition of this workshop was held on 5. September 2013 in Porto, Portugal, and
co-located with the 2013 International Conference on Field Programmable Logic and Applications
(FPL). Of all papers submitted to this workshop, 7 were selected for presentation. In addition, we
were able to attract 2 invited talks from established academics in the field, resulting in a diverse
program that covers many aspects of self-aware systems. We would like to thank all authors for
submitting their work to the workshop. We would also like to thank the program committee for
reviewing papers and helping with the paper selection. We gratefully acknowledge the financial
support of Awareness, a FET coordination action funded by the European Commission under FP7.
Special thanks go the the FPL organisers who helped us co-locating this workshop with FPL 2013.

Tobias Becker, Imperial College London
Marco Platzner, University of Paderborn
Markus Happe, ETH Zurich
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INVITED TALK: BUILDING INTELLIGENT SPACE EXPLORATION MISSIONS

Mike Hinchey

Lero–the Irish Software Engineering Research Centre
Limerick, Ireland

email: mike.hinchey@lero.ie

Talk summary
NASA’s new age of space exploration augurs great promise for deep space exploration missions whereby spacecraft should be
independent, autonomous, and smart. Nowadays NASA increasingly relies on the concepts of autonomic computing, exploiting
these to increase the survivability of remote missions, particularly when human tending is not feasible. Autonomic computing
has been recognized as a promising approach to the development of self-managing spacecraft systems that employ onboard
intelligence and rely less on control links. We describe our work on developing self-management concepts inspired by biological
concepts and formally specifying these with particular reference to a NASA concept exploration mission.

About the speaker
Mike Hinchey is Director of Lero–the Irish Software Engineering Research Centre, a multi-institutional research centre funded
by Science Foundation Ireland, and Professor of Software Engineering at University of Limerick, Ireland. He was previously
Director of the NASA Software Engineering Laboratory at Goddard Space Flight Center and continues to serve as a NASA
expert consultant. He is editor-in-chief of Innovations in Systems and Software Engineering: a NASA Journal (Springer) and is
currently a Vice President of IFIP and Chair of the IFIP Technical Assembly.
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INVITED TALK: FROM SELF-AWARE ROBOTICS TO ADAPTIVE SILICON CHIPS:
KNOBS AND MONITORS

Andy Tyrrell

Department of Electronics
University of York, York, UK

email: andy.tyrrell@york.ac.uk

Talk summary
Biological inspiration in the design of computing machines finds its source in essentially three biological models: phylogene-
sis, the history of the evolution of the species, ontogenesis, the development of an individual as directed by his genetic code,
and epigenesis, the development of an individual through learning processes influenced both by their genetic code and by the
environment. These three models share a common basis: a one-dimensional description of the organism, the genome and
contribute explicitly or implicitly to self-awareness in biological organisms. If one would like to implement some or all of
these ideas in hardware (e.g. robots, silicon) can we achieve self-awareness? Do we need specifically designed-for-purpose
hardware? This talk will consider some historical work on bio-inspired architectures before moving on to consider some recent
work in collective robotics showing forms of self-repair and a new FPGA designed and fabricated specifically for bio-inspired
work. It will consider some of the novel features present in this device, such as reconfigurable analogue components, which
assist the implementation of capabilities such as self-repair and self-tuning.

About the speaker
Andy Tyrrell received a 1st class honours degree in 1982 and a PhD in 1985 (Aston University), both in Electrical and
Electronic Engineering. He joined the Electronics Department at York University in April 1990, he was promoted to the Chair
of Digital Electronics in 1998. His main research interests are in the design of biologically-inspired architectures, artificial
immune systems, evolvable hardware, FPGA system design and real-time systems. This work has included the creation of
embryonic processing array, intrinsic evolvable hardware systems and the immunotronics hardware architecture. He is Head
of the Intelligent Systems research group at York. He has published over 280 papers in these areas. He is a Senior member of
the IEEE and a Fellow of the IET.
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AUTONOMIC CONFIGURATION OF DYNAMIC PROTOCOL STACKS

Ariane Keller, Stephan Neuhaus, Markus Happe ∗

Communication Systems Group
ETH Zurich, Zurich, Switzerland

email: first.last@tik.ee.ethz.ch

Daniel Borkmann †

Red Hat
Zurich, Switzerland

email: borkmann@redhat.com

ABSTRACT

The Internet architecture works well for a wide variety of
communication scenarios. However, communication in con-
strained environments with embedded and/or mobile devices
requires specialized communication protocols. Addition-
ally, network characteristics often vary in those scenarios,
which makes it difficult for a static set of protocols to pro-
vide the required functionality. Therefore, we propose a
self-aware configuration method for dynamic protocol stacks
that allows for the autonomic configuration of individual
protocols into a protocol stack. This adaptation happens
at run-time and might be triggered by policy changes or
by changing network conditions. We demonstrate the effi-
ciency of our self-aware architecture for a networking sce-
nario where the link quality changes over time. In contrast
to a static reliable protocol stack we can reduce the com-
munication overhead in terms of sent packets by 28% for a
given scenario.

1. INTRODUCTION

In contrast to the beginning of the computing age, nowadays
most applications are distributed and interact with other de-
vices. Today’s applications are executed on a variety of de-
vices (such as workstations, notebooks, cellphones, sensor
nodes) with different processing power and in varying net-
work conditions (such as wireless or wired, trusted or un-
trusted, etc.). We can no longer assume that a static network-
ing architecture always provides robust and secure commu-
nication links with high throughput at low performance over-
head and power consumption.

For instance, mobile devices are usually used in dynamic
network environments, where the link quality can vary dra-
matically over time, e.g., when a user moves away from
or approaches a WLAN hotspot. Moreover, the user may
switch between private and public networks, which may re-
quire different privacy modes. Static networking architec-
∗The research leading to these results has received funding from the

European Union Seventh Framework Programme under grant agreement
no 257906.
†This work was performed while affiliated with ETH Zurich.

tures usually lack the flexibility to adapt themselves to dy-
namic environments in order provide the required commu-
nication functionalities at minimal cost.

In the current Internet architecture certain protocols can
already adapt themselves to changing communication con-
ditions. However, the overall functionality to be provided
by a communication link has to be specified while writ-
ing an application and can only be selected from a small
pre-defined range. We argue that in order to execute ap-
plications optimally in dynamic network environments, we
need a self-aware communication architecture, in which the
overall functionality autonomously adapts itself to the cur-
rent network characteristics. Examples of such an adapta-
tion could be the dynamic inclusion of a reliability and/or
a privacy block in the protocol stack whenever the network
conditions demand them.

In previous work [1, 2] we have already proposed to use
dynamic protocol stacks instead of static protocol stacks.
Dynamic protocol stacks (DPS) split the networking func-
tionalities into individual functional blocks, which can be
dynamically linked with each other in order to form arbi-
trary protocol stacks. In this paper we extend our work by
introducing a self-aware networking architecture that adapts
the protocol stacks at run-time to a changing environment.

Specifically, our contributions are:
• We have developed a self-aware network node archi-

tecture that supports the autonomic configuration of
dynamic protocol stacks.

• We have developed techniques to set up and adapt pro-
tocol stacks based on application requirements and the
current network condition.

• We have evaluated our self-aware architecture with
a real-world scenario and shown that self-adaptation
of the protocol stack can reduce the communication
overhead in terms of sent packets as compared to static
stacks.

The rest of this paper is structured as follows: We first
give an overview of related work (Section 2). Then, we
present our self-aware networking architecture and our self-
adaptation strategies in Section 3. Next, we demonstrate the
efficiency of our approach in a real-world networking sce-
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nario with changing link qualities (Section 4). Finally, Sec-
tion 5 concludes the paper.

2. RELATED WORK

Already in the early 1990s, Tennenhouse and Wetherall pro-
posed Active Networks in which users could inject custom
code into the network [3]. This code was associated with
a set of packets that traversed the network from the source
over several routers to the destination. The code was exe-
cuted on intermediate nodes and could modify the packets
on-the-fly as desired. Less flexible architectures were pro-
posed by the Clickmodular router [4] and netgraph [5].
Both Click and netgraph offer the possibility to com-
bine networking functionalities flexibly. However, they did
not focus on run-time reconfiguration. The concepts of flex-
ibility, modularity, and extensibility were also recently pre-
sented by Ghodsi et al. [6] as the basic requirements for a
network architecture that is able to evolve. Wolf et al. [7] ar-
gue that a user should be able to choose the service that best
fits his requirements. In contrast to related work we present
a novel self-aware networking architecture which adapts its
protocol stack autonomously to react to a changing environ-
ment without fine-granular user interaction.

3. SELF-AWARE NETWORKING ARCHITECTURE

In this section we describe our self-aware networking ar-
chitecture that enables us to dynamically configure protocol
stacks. We first discuss the architecture developed for the
node-local adaptation and then we focus on the setup and
adaptation of the protocol stack between nodes.

3.1. Node-Local Adaptation

Figure 1 shows our self-aware network node architecture,
which consists of the following building blocks:

• The network models contain the network protocols,
the network characteristics, as well as some predic-
tions on how the world might look like in the future.

• The sensors provide information such as the signal-
to-noise ratio, available energy, or throughput. Sen-
sors can be passive (just observing) or active (insert-
ing probes in the network, observing the reaction).

• The sensor daemon collects data from the individ-
ual sensors. It offers additional functionality such as
sending notifications whenever a monitored value ex-
ceeds a specified threshold.

• The self-adaptation engine contains a strategy finder,
which selects the current strategy (minimize power,
maximize throughput, etc.), and a stack builder, which
determines the best stack and adapts the networking
core accordingly.

• The networking core is responsible for processing
network packets. Therefore, it passes a network packet
between functional blocks. The details of our net-
working core are described in [2].

self-adaptation engine
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stack
builder

user input:
goals

sensor daemon

SNR

energy
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throughput

latency
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Fig. 1. Overview of the self-aware node architecture.

Building a protocol stack requires the knowledge of (a)
the available protocols and (b) the communication require-
ments. In the Internet architecture, an application solves this
problem by using a specific BSD socket type and additional
libraries as needed, e.g., for encryption. This setup implies
that once the application is written it will always use the
same protocols and it cannot make use of newly developed
protocols that might fit its needs just as well or even better.
In our self-aware networking architecture, the application
can specify a set of properties that need to be fulfilled for a
given communication. The stack builder then examines the
protocol models and finds all protocol stacks that match the
requirements. In the current implementation, both protocols
and requirements, are specified with simple key words.

3.2. Inter-Node Adaptation

Once all possible stacks are known, a connection to the des-
tination node has to be established. The destination node
might not have the required protocols available; therefore,
before the communication starts, a protocol stack negotia-
tion phase is executed. First, all possible protocol stacks are
sent to the destination node. The destination node decides
which protocol stack to use, sets up this protocol stack and
sends the chosen configuration back to the source. If the
source never receives a reply from the destination, which
could happen on a lossy link, the source re-sends the con-
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figuration message and waits for the confirmation. After the
completion of the negotiation phase, the actual data trans-
mission starts. In order to solve the “chicken and egg prob-
lem” of the protocol used for the protocol negotiation phase,
we assume that all nodes in a given network segment use the
Ethernet protocol. Similarly, if a connection to a node in an-
other segment should be established, the intermediate nodes
have to use the same routing protocol.

Upon receiving a data packet, a node has to decide how
to process it. In the Internet architecture this decision is
based on next header fields that are part of each protocol
header. For example, in the next header field of the Ethernet
protocol it is specified whether the next protocol is IPv4,
IPv6, ARP, etc. If the protocol stack is negotiated upfront,
this step by step resolution of the next protocol is not neces-
sary, instead, a single identifier per connection can be used.
This identifier is calculated by the stack builder as follows:
Every functional block has a unique name. In order to obtain
a unique name the inverted url that is associated with the
developer is used. This is similar to the convention for pack-
age names in the Java programming language. The unique
identifier for the overall protocol stack is then obtained by
concatenating the individual names and hashing them. If
the identical protocol is implemented by several develop-
ers, and their implementations pass an interoperability test,
a special interoperability name should be used. Upon packet
reception, the Ethernet functional block checks the hash and
forwards the packet to the corresponding stack “pipeline”.

When the networking conditions change, the self-aware
nodes might want to change the protocol stack to add or re-
move networking functionalities. Identifying a given stack
by a unique identifier is also valuable when changing the
protocol stack on-the-fly. The negotiation of the new pro-
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Fig. 2. Updating the dynamic protocol stack over time.

tocol is similar to the negotiation for setting up a protocol.
The re-negotiation is executed over the currently used proto-
col. While adapting the protocol stack packets might be re-
ordered on their way from source to destination. Therefore,
special care has to be taken that packets still belonging to the
old stack are not processed by the new stack and vice versa.
Since the hash that identifies a given stack will change when
the protocol stack is changed, also the packets sent over the
new stack will be identified with a different hash. This hash
is used to dispatch the packet either to the new or the old
protocol stack. Figure 2 depicts this change of the protocol
stack.

4. EXPERIMENTAL RESULTS

We implemented the self-aware network node architecture
as a combination of Linux kernel modules (for the network-
ing core) and user-space tools (for monitoring and config-
uration). However, it could be implemented on any other
operating system as well. Our implementation is designed
to scale from small embedded systems up to high-end SMP
servers. Applications interact with the network architecture
over a new BSD socket family that supports the following
socket calls: open, ioctl, sendto, poll, recvfrom, close. A
library is provided that allows for specifying the communi-
cation requirements. The source code of our architecture to-
gether with getting started information is available in github
at http://github.org/epics/reconos.

In order to evaluate the benefits of a self-aware network
architecture, we show how our system autonomously adapts
itself to changing network conditions. We developed a sim-
ple application that mimics a sensor that sends measurement
data periodically to a server. We argue that transmitting a
packet over a wireless interface costs energy, and therefore
should only be performed when necessary. Therefore, we
implemented a stack builder that includes an idle repeat re-
quest (IRR) reliability protocol in the protocol stack, only
when sensors report low link quality. The link quality is de-
termined by a sensor that divides the current with the maxi-
mum possible wireless link quality. Our link-quality-aware
networking architecture is shown in Figure 3.

We evaluated our architecture on commodity notebooks.
In order to obtain reproducible results, we used a wired con-
nection between the test machines and used the Linux traffic
control tool tc with the netem discipline [8] to em-
ulate packet loss. We recorded the link quality between two
nodes while walking around in our office building, see Fig-
ure 4. We have used this recording as realistic input for our
emulation. Simultaneously, we measured that packets got
lost, when the link quality was below 35%.

Our stack builder requests to be notified by the sensor
daemon when the signal strength falls below a threshold of
40% or increases beyond 50%, see Figure 4. Upon such an
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Fig. 4. Measured link quality over 140 seconds. Packets got
lost when the link quality was below the dashed line. The
DPS is updated when the graph crosses the gray bar.

event, it either inserts the reliability module or it removes
the reliability module, and renegotiates the protocol stack
with the neighboring node. The lower threshold for rene-
gotiation ensures that the reliability protocol is inserted to
the protocol stack before the link quality reaches the critical
value of 35%. The upper threshold is used to avoid frequent
adaptations of the protocol stack.

For evaluation purposes, we compared the data loss rate
and the total number of packets sent for (i) a protocol stack
that dynamically adapts itself to the link quality, (ii) a proto-
col stack that never uses reliability, and (iii) a protocol stack
that always uses reliability. We used these measured values
to emulate the network conditions on a machine that con-
nected the two test machines.

Table 1 summarizes our results. The configuration with
no reliability lost on average 31% of the packets, whereas
we didn’t observe packet loss in the other two configura-
tions. However, this reliability comes at a price. The over-
head (in terms of sent packets) for achieving reliability was

128% for the configuration that was statically configured
to use the reliability protocol. The total overhead for the
dynamic configuration was 100% split in 60% for sending
acknowledgement and retransmission packets and 40% for
sending the protocol stack reconfiguration messages. This
clearly shows that adaptive protocol stacks can reduce the
total communication overhead in dynamic scenarios. How-
ever, the adaptation algorithm has to be designed carefully
to avoid increasing the total overhead by sending too many
stack reconfiguration messages.

Table 1. Comparison between static and autonomous con-
figurations over 140 seconds.

overhead
config. packet loss rate reliability reconfig.

unreliable 31% - -
reliable 0% 128% -

autonomous 0% 60% 40%

We also measured the protocol stack reconfiguration time,
i.e., the time it takes from an event that triggers a reconfig-
uration until data can be sent over the new protocol stack.
This time is composed of (i) the time to determine and re-
configure the stack on both sides of the communication and
(ii) the time to send the reconfiguration messages. We mea-
sured a protocol stack reconfiguration time of 806µs whereof
286µs were required for the transmission of the packets (round
trip time).

5. CONCLUSION

In this paper we presented a novel self-aware network node
architecture. The self-adaptation of the protocol stack is
triggered by combining the sensor input with models and
goals. The currently implemented self-adaptation techniques
allow to insert or remove protocols, such as encryption or
reliability, at run-time. We demonstrated that our self-aware
networking architecture can autonomously adapt its proto-
col stack to varying link qualities without loosing any pack-
ets while reducing the communication overhead (in terms of
sent packets) by 28% compared to a static networking archi-
tecture.

In future work we will focus on more advanced self-
adaptation algorithms and we will apply our architecture to
a smart camera network. The platform for the smart cameras
will be ReconOS [9], which allows us to execute some parts
of the network functionality, such as encryption or compres-
sion algorithms, in hardware, while still being able to freely
compose and adapt the protocol stack.

6



6. REFERENCES

[1] G. Bouabene, C. Jelger, C. Tschudin, S. Schmid, A. Keller, and
M. May, “The autonomic network architecture (ana),” Selected
Areas in Communications, IEEE Journal on, vol. 28, no. 1, pp.
4–14, Jan. 2010.

[2] A. Keller, D. Borkmann, and W. Mühlbauer, “Efficient im-
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ABSTRACT

Optimizing reconfigurable designs is a complex task
that usually involves manual design analysis and subsequent
tweaking. We present a new Multi-Objective Machine Learn-
ing Optimizer (MOMLO) which supports self-optimization
of reconfigurable designs through automatic analysis and
adaptation of design parameters. From a number of bench-
mark executions, our tool automatically derives the charac-
teristics of the parameter space and creates a surrogate model
covering the multiple objectives of the design. The resulting
Pareto fronts of possible design configurations can be used
for self-optimization at run time. For example, we can switch
between a fast but power hungry design and a relatively slow
but low power alternative. We evaluate the algorithm using a
multi-objective example consisting of power and throughput
benchmarks.

1. INTRODUCTION

In previous work [1, 2] we have demonstrated automatic
optimization for reconfigurable designs by constructing sur-
rogate models of fitness functions which represent the design
quality of parameterized designs. We now extend our work
to optimize for multiple competing design aspects such as
power efficiency, performance and accuracy. Our new Multi-
Objective Machine Learning Optimizer (MOMLO) aims to
discover a set of balanced solutions with respect to several
objectives and represent them in a Pareto optimal front. A
surrogate model of all the design objectives is constructed,
which brings substantial savings since its evaluation is orders
of magnitude faster than generation of bitstreams and code
execution of benchmarks. Our MOMLO approach results
in a substantially reduced design effort compared to tradi-
tional approaches which require the designer to manually
analyze the application, create models and benchmarks, and

∗This work is supported by the European Union Seventh Framework
Programme under grant agreement number 248976, 257906, 287804 and
318521, by UK EPSRC, by Maxeler University Programme, and by Xilinx.

subsequently optimize the design [3, 4, 5, 6]. Furthermore,
we support self-optimization at run time where an optimal
design variant can be reconfigured based on dynamically
changing operating conditions or environments by repeat-
edly extracting the most suitable design from the discovered
Pareto optimal front. The contributions of this paper are:

• The new MOMLO approach. We show how multiple
Bayesian regressors, classifiers and multi-objective
meta-heuristics can be interlinked (Section 3).

• An evaluation of the extended MOMLO approach
using a case study where a quadrature based finan-
cial application with varied precision is optimized for
throughput and power consumption (Section 4).

2. BACKGROUND

When developing reconfigurable applications, designers are
often confronted with a very large parameter space. As
a result parameter space exploration can take an immense
amount of time. A number of researchers approach the prob-
lem of high-cost fitness functions and large design spaces
in various fields by having fitness functions combined with
fast-to-compute Gaussian Process (GP) surrogate models
for decreasing evaluation time [7, 8, 9, 10, 11]. However
most current surrogate models only consist of a regressor
and rarely take into account invalid configurations within the
design space. Surrogate models, which approximate fitness
functions by substituting lengthy evaluations with estimations
based on closeness in a design space, have been investigated
in reconfigurable computing [12]. The work covers surro-
gate models for circuit synthesis from higher level languages,
rather than parameter optimization. In previous work [1, 2]
we have shown that it is useful to construct surrogate models
of fitness functions representing the design quality of recon-
figurable parameterized designs. The optimization approach
we developed replaces the following steps:

1. Build application and a benchmark returning design
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quality metrics.

2. Specify search space boundaries and optimization goal.

3. Create analytical models for the design.

4. Create tools to explore the parameter space.

5. Use the tools to find optimal configurations, guided by
the models in step 3.

6. If result is not satisfactory, redesign.

When using the Machine Learning Optimizer (MLO) the
user supplies a benchmark along with constraints and goals,
and the MLO automatically carries out the optimization. The
approach consists of the following steps:

1. Build application and benchmark returning design
quality metrics.

2. Specify search space boundaries and optimization goal.

3. Automatically optimize design with MLO.

4. If result is not satisfactory, redesign or revise time
budget and search space.

2.1. Gaussian Process Regression

GP is a machine learning technology based on strict the-
oretical fundamentals and Bayesian theory [13]. GP does
not require a predefined structure; it can approximate arbi-
trary function landscapes including discontinuities, and in-
cludes a theoretical framework for obtaining optimum hyper-
parameters [10]. An advantage of GP is that it provides a
predictive distribution, not a point estimate.

A Gaussian process is a collection of random variables,
a finite set of which have a joint Gaussian distribution. A
Gaussian process is completely specified by its mean function
m(x) and the covariance (kernel) function k(x,x′). The goal
is to compute regression: f̂(x) ∼ GP(m(x), k(x,x′))

The function k(x,x′) describes the covariance between
pairs of random variables, and in regression analysis it ex-
presses the relation between input-output pairs. This is based
on a training setD of n observations,D = (xi, yi)|i = 1, ...n,
where x denotes an input vector, and y denotes a scalar out-
put. The column vector inputs for all n cases are aggregated
in theD×n design matrixX , and the outputs are collected in
the vector y. The goal of Bayesian forecasting is to compute
the distribution p(f̂ |x∗,y, X) of the function f̂ at unseen
input x∗ given a set of training points D. Using Bayes rule,
the predictive posterior for the Gaussian process f̂ and the
predicted scalar outputs f̂(x∗) = y∗ can be obtained.

2.2. Support Vector Machines Classification

Support Vector Machine (SVM) is a maximum margin clas-
sifier, which constructs a hyperplane used for classification
(or regression) [14]. SVMs use kernel functions k(x,x′)
to transform the original feature space to a different space
with a linear model used for classification. SVMs are a
class of decision machines and do not provide posterior
probabilities. There is a training set D of n observations,
D = (xi, ti)|i = 1, ...n, where x denotes an input vector, t
denotes a target value. The column vector inputs for all n
cases are aggregated in the D × n design matrix X , and the
targets in the vector t. The goal is to classify an unseen input
x∗ based on X and t by computing a decision boundary.

2.3. PSO

Particle Swarm Optimization (PSO) is a population-based
meta-heuristic based on the simulation of the social behavior
of birds within a flock [15]. The algorithm starts by randomly
initializing N particles where each individual is a point in
the X = R× ...×R search space. The population is updated
in an iterative manner, with each particle displaced based on
its velocity vid. The criteria for termination of the PSO algo-
rithm can vary, and usually are determined by a time budget.
The variable xid represents the dth coordinate of particle i
from the set X∗ of N particles, where each particle is a point
withinX . Multi-objective optimization is usually approached
by finding a Pareto optimal set of the underlying fitness func-
tions. The original PSO algorithm was designed to cope with
single-objective optimization problems, multiple different
flavors have been developed to cope with multi-objective op-
timization [16, 17]. Many more sophisticated multi-objective
meta-heuristic algorithms have been developed [18]. The de-
signer has to assess his requirements in terms of performance
and robustness when deciding which algorithm to use. In
such problems, the objectives to be optimized are normally in
conflict with respect to each other, which indicates that there
is no single solution for all of these problems. Instead, we
aim to find ”trade-off” solutions that achieve the best possible
compromise among the objectives. In other words, we wish
to find the Pareto optimal set P∗ which is an approximation
of the Pareto Front PF∗ [19].

3. OPTIMIZATION APPROACH

The optimization approach of MOMLO is inspired by that
of MLO. The idea of multi-objective surrogate modeling is
illustrated in Fig. 1. The MOMLO algorithm explores the
parameter space by evaluating different benchmark config-
urations as presented in Fig. 1a. Fig. 1b shows the results
obtained during evaluations are used to build surrogate model
which provides regressions of the fitness function multiple-
metrics and identifies invalid regions of the parameter space.
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(a) (b) (c)

Fig. 1: Benchmark evaluations, surrogate model and model guided search for a problem with three conflicting objectives.

A multi-objective PSO guides the exploration of the param-
eter space using the surrogate model, as shown in Fig. 1c.
The main novelty is that the result of optimization is a Pareto
optimal set of designs P∗, allowing the design to self-adapt
when circumstances change.

3.1. Fitness Function

The parameter space X of a reconfigurable design is spanned
by discrete and continuous parameters determining both the
architecture and physical settings of Field programmable gate
array (FPGA) designs. Given a parameter setting x ∈ X , a
benchmark consists of a vector of fitness metric [y1, y2, .., yi] =
y and t, the exit code of the application. A function bi(x) =
yi represents one of the K objectives. Execution time and
power consumption are examples of possible objectives. Vec-
tor y consists of multiple fitness measures when the designer
wants to find an optimal design defined in terms of a number
of qualities. For example the y vector could constitute of
execution time and power usage, if the aim is to find the set of
power efficient designs. There are many possible exit codes
t, with 0 indicating valid x’s. The designer can choose to
extend the benchmark to return additional exit codes depend-
ing on the failure cause, such as configurations producing
inaccurate results or failing to build.

We distinguish three different types of exit codes. The
first type is exit code 0 indicating a valid design. The second
type of exit codes indicate configurations that produce results
yet fail at least one constraint making them undesirable. The
third type of exit codes are used for configurations that fail
to produce any results. The region of X that defines configu-
rations x that produce y and satisfy all constraints is defined
as valid region V , regions with designs failing at least one
constraint yet producing y are part of failed region F , and the
region with designs failing to produce y is the invalid region
I. If x∗ does not produce a valid result, we assign a value
that the designer assumes to be the most disadvantageous.
Depending on whether we face a minimization or a maxi-
mization problem for a given objective function fi either a

∞ or −∞ value will be assigned as presented in Eq. 1.

fi(x) =

{
yi x ∈ V
±∞ otherwise

(1)

3.2. The MOMLO Algorithm

We integrate a GP regressor f̂ and an SVM classifier to create
a novel surrogate model of fitness function f . As illustrated
in Fig. 1, the problem we face is regression of f over V and
F as well as classification of X . We make use of GP to ac-
cess the standard deviation estimate σ(x∗) of non-examined
parameter configurations x∗. We use SVMs to predict exit
codes of X∗ across X . Regression f̂i for a function fi is
created using the training set obtained from benchmark exe-
cution DRi, while classification is done using the training set
DC . We invoke regressions f̂i(x∗) for every particle in X∗
and for every function fi and aggregate the results to obtain
the regression [f̂1(x∗), f̂2(x∗), .., f̂n(x)] = f̂(x∗) = y∗ and
its uncertainty vector [σ1(x∗), σ2(x∗), .., σn(x)] = σ∗(x),
which is the standard deviation estimate. Exit code t∗ of
particle x∗ is predicted by the classifier.

In our MOMLO algorithm, we adopt 1) density mea-
sure [20] (indicates the closeness of the particles within the
swarm) as the criterion to choose the leader for particles, i.e.
guide the population to spread out along real Pareto frontier
as fast as possible; 2) ”ε-dominance” method [21] to retain a
non-dominated solution to the Pareto Front, which is believed
to be able to generate well-formed Pareto optimal set as well
as to generate the front evaluating fewer fitness functions.
We present the MOMLO approach in Algorithm 1. The al-
gorithm includes a classifier to account for invalid regions
of X . We initialize the meta-heuristic of our choice with
N particles X∗ randomly distributed across the parameter
space. Each particle has an associated fitness x.fit and a
position x. For all x∗ predicted to lie in V we proceed as
follows: whenever σmax(x∗), the largest value out of all σi,
returned by the GP is below a credible interval minσ we
use the prediction y∗; otherwise we assume the prediction to
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Algorithm 1 MOMLO
1: for x∗ ∈ X∗ do
2: x∗.fit← f(x∗) . Initialize with a uniformly randomized set for

every objectives fi∗ in the fitness function.
3: end for
4: repeat
5: for x∗ ∈ X∗ do
6: if σmax(x∗) < minσ and t∗ = 0 then
7: x∗.fit← y∗
8: else
9: if t∗ = 0 then

10: x∗.fit← f(x∗)
11: else
12: for i ∈ 1, 2, ...,K do . Depending on the objective of

each of the fitness function either∞ or −∞ is assigned
13: x∗.fiti ← ±∞
14: end for
15: end if
16: end if
17: end for
18: X∗ ←Meta(X∗) . Iteration of the meta-heuristic
19: until Termination Criteria Satisfied

be inaccurate and evaluate f(x∗). This step is required and
happens in a situation when at least one of the underlying
fi functions is not modeled accurately. Although individual
fi(x∗) could be evaluated, usually the cost of evaluation of a
single fi is marginally smaller than the cost of evaluation of
f . Based on our experience values within the range of 0.01
and 0.1 are the most practical for minσ. Larger credible in-
terval will usually hinder MOMLO performance due to high
admissible uncertainty which is especially problematic when
the mean estimate is relatively small. The meta-heuristic will
avoid I and F regions as they are both assigned unfavorable
±∞ values. Whenever f(x) is evaluated, (x, t) is included
within the classifier training set DC . If the exit code is valid
(t = 0), then (x, yi) is added to DRi.

4. EVALUATION

In [4] the designer explores trade-off between accuracy and
throughput in a quadrature-based financial application with
three parameters. The first two parameters are mantissa
width mw of the floating point operators and the number of
computational cores cores. Having more mw bits increases
computation accuracy, but limits the maximum number of
cores that can be implemented on the chip due to the in-
creased size of the individual core. The third parameter is
the density factor df which is inversely proportional to the
integration grid spacing. It is an application parameter and is
independent of the FPGA device used. The density factor df
increases computation time per integration while improving
the accuracy of the results due to having a finer integration
grid.

The optimization goal is to find the design offering the
highest throughput of integrations per second φint (f1) and
the lowest power consumption W (f2) given a required min-

imum accuracy defined in terms of root mean square error
εrms. The error is defined with respect to results obtained by
calculating a set of reference integrals at the highest possible
precision. MOMLO terminates when the globally optimal
configuration for a given εrms is found. The F region con-
tains the inaccurate result class. The design space X is de-
fined asmw×cores×df : {11−53}×{1−16}×{4−32}.
We repeat the experiment for different error limits εrms 10
times; we find that in order for the approximate front to cover
the real Pareto front we require around 158 (εrms = 0.1),
116 (εrms = 0.05) and 91 (εrms = 0.01) fitness function
evaluations. By coverage we understand that around 30% of
designs within the approximate front will reside on the real
front and around 35% will match it within a 5% performance
limit. The approximate front includes more designs, and 50%
of the designs from the real front reside within it. The rest of
the designs have a higher discrepancy (around 10%) due to
surrogate model inaccuracies. The coverage can be improved
by increasing the number of fitness evaluations.

When comparing MOMLO to the single-objective MLO
[2] the increase of the number of required fitness function
evaluations to reach termination criteria is noticeable and
dependant on the size of valid area. The increase in fit-
ness function evaluations is 15% (0.1), 73% (0.05) and 94%
(0.01) for the evaluated error limits. Longer optimization
time of multi-objective problems is expected since the prob-
lems complexity increases with respect to single-objective
optimization. Although the overhead can be significant, it
seems to decrease as the size of valid area increases (in-
creased εrms). As presented in [2] the manual optimization
procedure requires 420 fitness function evaluations to find
an optimal design for a given εrms. In best case scenario
the number would not be increased for multiple objectives
meaning MOMLO would still offer superior performance.
The drawback of MOMLO is the lack of guaranty of finding
the true Pareto optimal front.

5. CONCLUSIONS AND FUTURE WORK

Our MOMLO approach can be used to create a self-adaptive
system which can constantly improve its knowledge of the
design’s Pareto optimal configuration set, and switch between
design configurations depending on the current environment.
The algorithm shows much promise, however its capability
and scope require further investigation. We are preparing a
number of new multi-objective evaluation cases which should
help us to assess MOMLO’s robustness and performance.
Furthermore we are investigating a distributed version of
the algorithm, enabling a parallel approach and hence faster
optimization when the compute resources are available. This
allows for an optimization approach where the algorithm self-
adapts the optimization strategy to balance its search speed
and efficiency.
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(a) (b)

Fig. 2: The Real and Approximated Pareto Fronts for different εrms limits.
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ABSTRACT
Mixed workload and multi-application scenarios charac-

terize modern and future reconfigurable systems. On the one
hand, such systems consist of applications with objectives
which may dynamically change during different execution
phases. On the other hand, the designer or user of the system
specifies requirements, e.g., regarding its power consump-
tion, which have to be filled at any time. The main challenge
is to partition the resources of the heterogeneous hardware
architecture between the applications such that their objec-
tives are optimized while fulfilling the system requirements.
In this context, dynamic application objectives and system
requirements can only be handled by providing self-adaptive
resource management at run-time.

This paper discusses a distributed approach to resource
management which is derived by applying Lagrangian dual
decomposition. Each application is only aware of its own
objectives and determines the desired amount of resources
solely based on local information. The proposed mechanism
steers the decisions of applications to be in compliance with
the objectives and requirements of the overall system. We
show that this approach achieves results which are compet-
itive, and in many cases even significantly better than the
results of a centralized heuristic used as state-of-the-art for
resource management in reconfigurable systems while hav-
ing the advantages of a distributed approach.

1. INTRODUCTION

Driven by the constant increase of the clock frequency, the
functionality and usage scenarios of embedded systems have
grown more and more complex and dynamic over the past
years. Since 2005 however, semiconductors are increasingly
confronted with physical issues concerning heat, power con-
sumption, and leakage problems so that the increase in clock
frequency of the computational resources has stagnated. Het-
erogeneous and highly parallel hardware architectures have
emerged as a consequence. Obtaining further performance
gains on these architectures requires that programs exploit
the available parallelism. At the same time, the architec-
tures have to provide reconfigurability so that the resources

can be shared optimally between applications for varying
workloads and other dynamic usage scenarios.

In this context, resource allocation is an optimization
problem with further objectives in addition to the perfor-
mance increase of individual applications. For instance, mo-
bile systems usually need an allocation of computational
resources with the requirement of the power consumption
staying within a power budget. This means that it is required
to select an implementation for each application such that
their objectives are optimized while fulfilling such system
requirements.

In this paper, we provide a mechanism for distributed re-
source allocation based on a round based negotiation scheme.
We derive this negotiation scheme from the formulation of
the original optimization problem by applying Lagrangian
dual decomposition. This results in a mechanism where
self-aware applications optimize their resource requirements
based on local information only, while a master steers their
decisions to be in compliance with the objectives and re-
quirements of the overall system. One interesting aspect of
this approach is the decoupling of master and applications
since they do not require any local information of each other.
This self-awareness and separation of concerns provides the
scalability and flexibility required for dynamic usage sce-
narios.

2. RELATED WORK

Resource allocation for dynamic embedded systems is of-
ten tackled by design-time methodologies in the form of
scenario-based design, e.g., [1], or multi-mode system syn-
thesis, e.g., [2], as it is possible to apply powerful verifi-
cation and optimization techniques to generate feasible and
highly optimized implementations. Nonetheless, near-future
embedded systems cannot be fully predicted at design-time
due to dynamic usage scenarios and unexpected unavailabil-
ity of hardware resources because of aging, reliability, or
temperature effects.

The only way for being able to deal with this is to pro-
vide the system with a run-time resource management (RRM)
layer which dispatches the reconfigurable resources to the
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applications. Centralized RRMs collect all information rele-
vant for calculating an optimized resource allocation. How-
ever, they have to deal with scalability and reliability issues
as they form a single point of failure and produce commu-
nication and computation hot-spots and bottlenecks at the
processors running the RRM. Even security issues can arise
when an application has to reveal all internal information,
and thus introduce the possibility of side-channel attacks.
Consequently, several decentralized RRM approaches have
been proposed, which are often based on multi-agent sys-
tems in the embedded domain [3, 4]. Here, also mechanisms
from distributed computing (grid computing, cloud comput-
ing) could be adopted, which are mostly provided through
auctions. In this paper, we present a formal approach to es-
tablish a distributed resource allocation approach where we
apply techniques from convex optimization to incorporate
self-awareness into the RRM.

3. DECOMPOSITION OF THE RUN-TIME
RESOURCE MANAGEMENT

An implementation of an application i can be characterized
by a vector xi. It contains the implementation’s quality num-
bers regarding application and system objectives, as well as
the amount of all resource types required to run this imple-
mentation on the heterogeneous system. The set of all pos-
sible implementations is denoted by Di. This turns out to
be a Pareto front, only containing implementations which
are non-dominated regarding the objectives and resource re-
quirements. Figure 1 illustrates an example. There is of
course the question of how to determine Di, and we ob-
serve two major directions in the related work. The first one
is to determine the non-dominated implementations Di at
design-time by performing design space exploration (DSE)
and applying profiling techniques [5, 6]. The second one
is to perform adaptive auto-tuning which uses parametrized
code variants [7] for being able to generate various imple-
mentations at run-time. They can then be evaluated by mon-
itoring the values of the objectives during their execution.

An application has different utilities for running in one
of the implementations, which is expressed by utility func-
tion fi : Di → R. This utility may depend on the current
execution phases of the application. The purpose of the util-
ity function is to assign each implementation with a scalar
value, which defines a total order over all elements in Di.
This is necessary for being able to make decisions at run-
time. Such functions are commonly achieved by performing
a scalarization of all relevant application objectives, e.g.,
[5, 6].

3.1. Resource Allocation Problem

Resource allocation in heterogeneous reconfigurable systems
can be formulated as a combinatorial problem with the goal
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Fig. 1. Example of implementations depicted as a Pareto
front for objectives speedup, power consumption, and usage
of three resource types (r1, r2, r3). Each point is annotated
with the amount of required resources of each type.

of selecting implementations of all applications which max-
imize their utilities while adhering to the system constraints.
Constraints originate from restricted physical and abstract
resources (e.g., available amount of computational resources
of a specific resource type or restricted power budgets). The
upper bound of a constraint j is specified by rj , and the
amount required by an implementation xi is given by rj(xi).

Whenever an application switches its execution phase or
the system environment changes, the system should be re-
configured to optimally utilize the available resources. This
problem can be formalized acc. to the following definition.

Definition 1. Resource allocation problem

maximize
n∑

i=1

fi(xi) (1)

subject to
n∑

i=1

rj(xi) ≤ rj , j = 1, ...,m (2)

Eq. (1) represents the objective to maximize the average util-
ity of all applications1, and Eq. (2) the m constraints.

3.2. Decomposing the Resource Allocation Problem

Generally, the optimization problem formulated in Def. 1 is
NP-hard. In this section, we therefore propose an approach
which is based on solving the Lagrangian dual optimization
problem. The main benefits are that this results in a convex
optimization problem, which can be solved much more ef-
ficiently than the primal problem, and that it can be decom-
posed to enable a distributed solution method. The mathe-
matical background applied in this section is, e.g., summa-
rized in [8].

The Lagrangian of the resource allocation problem is

L(x, λ) = −
(

n∑

i=1

fi(xi)

)
+

m∑

j=1

λj

(
n∑

i=1

rj(xi)− rj
)

(3)

1The constant normalizing factor 1/n can be omitted.
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where λj is the Lagrangian multiplier associated with the
j-th constraint.

The Langange dual function is then defined as

g(λ) = inf
x
L(x, λ) =

=

n∑

i=1

inf
xi


−fi(xi) +

m∑

j=1

λj · rj(xi)


−

−
m∑

j=1

λj · rj . (4)

The interesting aspects of the dual function are twofold. First,
the optimal implementation xi for given multipliers λ =
(λ1, ..., λm) can be calculated by application i independent
of other applications. Second, g(λ) is concave and continu-

ous in λ even when the primal objective function
n∑

i=1

fi(xi)

is not.
Now, the Lagrange dual optimization problem is given

as

maximize g(λ)

subject to λ ≥ 0, (5)

which, due to the nature of g(λ), is a convex optimization
problem. As such, it is possible to apply standard methods
to determine the optimal value for λ. An algorithm based on
the subgradient method [8] is summarized in Algorithm 1.
All application subproblems can be solved independently,
and the master problem of maximizing the dual function is
solved by applying the subgradient method for all Lagrange
multipliers.

Algorithm 1: Algorithm for solving the dual opti-
mization problem.

1 while !stopping criterion do
// application subproblems

2 for each i = 1, ...n do
3 Find xi that minimizes(

−fi(xi) +
m∑
j=1

λj · fj(xi)
)

;

// master problem
4 for each j = 1, ...m do

// Calculate subgradient of λj
5 ∆j = rj −

∑n
i=1 rj(xi);

// Apply update rule acc. to
subgradient method

6 λj = max{0, λj − αt,j ·∆j} ;

The algorithm proposes a negotiation scheme, as illus-
trated in Figure 2. The Lagrange multipliers can be inter-
preted as the price of the respective resource (cf. [9]): The

master problem component
maximize the costs (g(λ))

...

sub-problem component
application 1

maximize the asset(
f1(x1)−

m∑
j=1

λj · rj(x1)
)

sub-problem component
application n

maximize(
fn(xn)−

m∑
j=1

λj · rj(xn)
)

x1 λ xn λ

Fig. 2. Schematic illustration of resource allocation based
on dual decomposition.

master tries to maximize the costs, while each application
determines how much resources it wants to buy to maximize
its asset for the current price. The big advantage is the self-
awareness inherent in the algorithm: For no component is it
necessary to have any internal details about another compo-
nent.

A disadvantage is that due to the Lagrangian relaxation
in Eq. (3) the optimum is only approximated. This induces
that there might be a gap between the optimal value f∗ of
the original problem and the optimal value g∗ of the dual
problem, so that (−f∗) − g∗ ≥ 0 could be non-zero. As
a consequence, the negotiated outcome may not be achiev-
able or feasible. We therefore propose the following heuris-
tic. Applications can claim resources, e.g., by using mecha-
nisms known from invasive computing [10], which enables
the exclusive reservation of resources. Whenever resource
conflicts arise during this embedding, applications are prior-
itized to resolve these conflicts. We choose the priority to be
proportional to

fi(xi)−
m∑

j=1

λj · rj(xi), (6)

which represents the negotiated asset of application i. Ap-
plications which do not find sufficient resources for their ne-
gotiated implementation xi choose this implementation x′i
that can be feasibly implemented on the remaining resources
with maximal asset acc. to Eq. (6).

4. EXPERIMENTS

In this section, we present the results of our approach. In one
version, the negotiation is performed for 20 rounds (rrm20)
and in the other version for 100 rounds (rrm100) before the
applications are embedded. We compare our approach to
the knapsack heuristic from [5] (knap). For the first experi-
ments, we generated test cases from the e3s benchmark [11].
It contains five applications. The architecture contains three
different resource types. For each application, we generated
the Pareto sets Di by performing a DSE using the Opt4J
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Table 1. Results for e3s benchmark case study.

α approach speedup power[W] utility
∑
i

fi(xi)

0 knap [5] 3.21 8.25 -8.25
rrm20 5.00 8.80 -8.80
rrm100 5.00 8.80 -8.80

0.5 knap [5] 3.59 6.59 -1.50
rrm20 5.00 8.80 -1.90
rrm100 5.00 8.80 -1.90

0.75 knap [5] 24.14 40.07 8.09
rrm20 27.07 45.44 8.94
rrm100 26.85 45.08 8.86

1.0 knap [5] 27.92 57.67 27.92
rrm20 31.20 65.39 31.20
rrm100 31.48 63.66 31.48
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Fig. 3. Boxplots of the results for synthetic test cases rela-
tive to the results of knap (indicated by dashed line) for 100
experiments per setup.

framework [12] and optimized for resource usage, speedup
(compared to the implementation with highest latency) and
power consumption. The utility function is chosen accord-
ing to fi(xi) = α·speedup(xi)−(1−α)·power(xi), where
α is a weight for scalarizing the two objectives to maximize
the speedup and to minimize the power consumption. Re-
sults for different values of α are shown in Table 1. In all
cases, the results are close together, showing that the pro-
posed distributed approach is competitive with a fully cen-
tralized heuristic.

We furthermore performed test runs on synthetic test
cases with 5, 15, 25, and 35 applications, and an architec-
ture consisting of four resource types. For each such setup,
we generated 100 cases and evaluated them. Fig. 3 shows
the boxplots of the results for each setup, where the results
of knap serve as baseline and all other results are given rel-
ative to this in percent. The results show that the number
of negotiation rounds has to increase with the number of
applications as rrm20 degradates with the number of appli-
cations. In case of rrm100 however, the proposed approach
even performs better in a significant amount of experiments.

5. CONCLUSION

This paper demonstrates the application of formal mecha-
nisms to incorporate self-awareness into run-time resource
management (RRM) for embedded reconfigurable systems.
We have presented the use of Lagrangian relaxation and dual
decomposition. But also other techniques, such as game
theory [13], are promising mathematical tools to perform
this task. We discussed several advantages of distributed
and self-aware approaches for RRM compared to central-
ized heuristics. Nonetheless, they usually perform better
than distributed approaches as all details are available. How-
ever, the experiments have shown that the proposed distri-
buted approach is competitive and in many cases even sig-
nificantly better than a state-of-the-art centralized heuristic.
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ABSTRACT 

Field Programmable Gate Arrays (FPGAs) are very 

successful platforms that rely on large configuration 

memories to store the circuit functions required by users. 

Faults affecting such memories are a major dependability 

threat for these devices, and the applicability of FPGAs on 

critical systems depends on efficient means to mitigate 

their effects. The usual means to effectively remove such 

faults, namely configuration scrubbing, consists in 

rewriting the desired contents of the configuration 

memory. The scrubbing process suffers from high power 

consumption and a long mean time to repair (MTTR). In 

this work we propose a novel approach to enable self-

diagnosed circuits that, by being aware of their own 

disposition on the FPGA fabric are able to greatly reduce 

the MTTR. 

1. INTRODUCTION 

SRAM-based FPGA play an important role in self-aware 

systems by adding several attractive characteristics to logic 

designers: flexibility, high density and high pin count. 

However, these devices suffer reliability problems caused 

by Single Event Upsets (SEUs). SEUs in SRAM-based 

FPGAs are especially dangerous; because flipped bits in a 

configuration cell might change the device’s programmed 

functionality, creating a persistent error. 

Redundancy techniques as Dual Module Redundancy 

(DMR) and Triple Module Redundancy (TMR) can be 

used to hide the effects of SEUs, thus enabling the use of 

SRAM-based FPGAs in critical applications. The use of 

redundancy comes at a price; as the respective area 

overheads for DMR and TMR are 100 % and 200 % at 

least, redundancy also adds to power consumption. As 

redundancy works by detecting and/or masking the errors, 

it is possible to accumulate enough SEUs to overwhelm it 

and cause a failure. 

Self-awareness is explored in this work through a 

system that detects and repairs faults on itself before they 

become functional failures. Currently, the standard way to 

achieve this in a SRAM-based FPGA is to use  partial 

reconfiguration [1], [2], to re-write the configuration 

memory before the chosen redundancy is overwhelmed. 

This is called scrubbing and is usually accomplished by 

periodically re-writing the device’s configuration memory 

from start to end. The periodicity is calculated based on a 

statistical estimate of the SEU rate per time unit on the 

device’s operating environment. This means that a higher 

than anticipated SEU rate can leave a circuit with a 

configuration error. Also, scrubbing is not instantaneous, 

as the configuration bit streams sizes for modern devices 

are on the order of several megabits [3]; event the fastest 

configuration interface can pose unacceptable delays. The 

time required to fix an error with the scrubbing process is 

called Mean Time To Repair (MTTR). 

Due to FPGAs’ required flexibility, most configuration 

bits do not have an effect on the circuit, even for 

applications that use most of a device. This is due to most 

of them being routing configuration bits or bits that control 

unused resources. So SEUs on these idle configuration bits 

have no practical effects. The work in [4] exploits this fact 

to discover areas with high concentration of bits that affect 

the implemented circuit and then to choose  an optimum 

frame start position for the scrubbing process, minimizing 

the MTTR. In this work we extend this concept to improve 

the gain in MTTR obtained with a fine-grained error 

detection technique, which provides enhanced diagnosis. 

Thus, the FPGA circuits are aware of their own placement 

on the reconfigurable fabric and of the relation between 

configuration bits and error detection signals. By not 

having a single start position, but instead a dynamic one 

based on fine-grained diagnosis, significant improvements 

are attainable.  

 The remainder of this paper is organized as follows: 

in section 2 we discuss related works. Section 3 presents 

the proposed technique. The validation and measurement 

setup is explained in section 4, while section 5 contains the 

results and their discussion. We close this paper with the 

conclusions in section 6. 

2. RELATED WORK 

The opportunities provided from coupling error detection 

techniques and partial reconfiguration have been explored 

in the past a mean to provide high availability in SRAM-
This work is sponsored by the Conselho Nacional de 

Desenvolvimento Científico e Tecnológico (CNPq) 
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based FPGAs. By using configuration readback and a per-

frame CRC [5], it is possible to have a high precision on 

which frame should be corrected; but there’s still need for 

a time-consuming readback and thus a high correction 

latency. Other works like [6] rely on automatically 

exploring the design space, using DMR and TMR to meet 

reliability constrains while minimizing area and repair 

time. This exploration tests different partitioning schemes 

and granularities, with different trade-offs between 

correction latency and area overhead. 

 Fine-grained DMR is also used in [7], with a focus in 

softcore processors. The authors propose using 

precompiled bit streams to bypass faulty components, 

while halting the processor to avoid corrupting its current 

state and memory. As is discussed in [6], the extra 

precision afforded by finer-grain techniques create a 

greater area and power overhead. One way to mitigate 

these overheads is offered in [8]. The use of hardwired 

resources, in this case the carry chains of each slice, hides 

some of the costs, as this chain is part of the device itself 

and underused in many situations. 

3. DYNAMICALLY SHIFTED SCRUBBING 

Because in [8] there is approximately one error detection 

bit for each of the device’s slices, we can create the 

concept of an “error signature” that is formed by the 

concatenation of all error bits. These error signatures 

provide a more precise diagnosis information that thus can 

be used to guide a local repair procedure, provided the 

system is aware of its own signature-to-frame relations. 

The concept explored in this work is that a scrubbing 

procedure does not necessarily have to start at the first 

frame of the partition, as proposed in [4]. That work makes 

use of a previous error analysis to choose a single starting 

position for the scrubbing process, thus requiring only a 

very simple error detection scheme (primary output voters, 

watchdog). In this work, we make use of error signatures 

generated by a fine-grain error detection technique to 

dynamically guide the choice of the optimum starting 

frame, instead of relying on a statically chosen address. We 

aim for the ideal situation of having a fine-grained 

technique embedded on the final circuit and of using the 

error signature to jump to the best frame possible, MTTR-

wise. Figure 1 shows the fine-grained error detectors 

(represented by the “=?” boxes) and Signature Translators 

(ST) embedded on a circuit. 

To collect the error signatures, an error injection block 

is used, as described in the next section. The injector 

allows us to collect not only the signatures, but the frame 

address associated with them and when a different bit is 

tested within a frame. With this information, we can 

construct a histogram for each signature, with the frame 

number of the horizontal axis and the number of 

occurrences of that particular signature on the vertical axis. 

Figure 2 show the histograms for two different signatures 

for the misex3 circuit. 

It is possible to see in the histogram that one signature 

happens over 50 times for the same frame, frame 617. So it 

is fair to say that if that signature is detected, we could 

achieve a good precision if we simply corrected this frame. 

But it can also be seen that other frames generate the same 

signature as well and that they are near each other. So we 

can speculate that by starting the scrubbing by frame 617 

we might achieve a low MTTR, but it might not be lowest 

possible. Because the scrubbing would not start at the first 

frame, we call this technique shifted scrubbing. To find the 

best starting position, we calculate the MTTR for each 

possible starting frame f: 

 

Where MTTRs(f) is the MTTR for a given signature s 

and starting frame f, FS is the frame’s configuration size in 

bits, BR is the scrubbing bit rate, PB is the partition 

beginning and PE is the partition end. hs[i] is histogram 

value for s for the i-th frame and Os is the total amount of 

occurrences of s. Therefore, hs[i]/Os is the probability that 

the error is located in the i-th frame, whenever s is 

received. dist(i, f) is the distance between f and the i-th 

frame, i.e., the amount of frames that have to be written 

before reaching the i-th. It is defined as: 

Fig. 1. Embedded detectors and translators in a circuit 
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The sum in (1) is, therefore, the “mean frames to 

repair” when signature s is received and f is used as 

starting frame. It is converted to a time unit with the time 

required to write a frame (FS/BR). The scrubbing 

controller would start on the best frame and reconfigure the 

whole device. If during the scrubbing it reaches the end of 

the partition, it would continue the scrubbing on the 

partition’s beginning, until it reaches the last frame before 

the starting frame. This can be seen in equation (2), the 

first condition is the distance between f and i if f, the 

starting frame, is before i. In this case, the error is 

corrected before reaching the end of the partition. The 

second condition occurs when the error is only corrected 

after reaching the end of the partition and returning to its 

beginning. In this case, PE – f + 1 is the amount of frames 

written until the partition end and i – PB is the distance 

between the partition beginning and i. One improvement 

would be stopping the scrubbing process after the error 

detection signals turn off, saving power and readying the 

controller for a new scrubbing round faster. 

It is possible to leverage on the FPGAs high density if 

the error detectors and the blocks that translate the error 

signature to the optimum frame address, indicated as ST in 

Figure 1, are embedded on the device itself. This 

arrangement gives designers a high density device with 

self-error identification. 

4. EXPERIMENTAL SETUP 

In order to extract the error signatures, and thus identify 

which bits are critical in a design, it was used an error 

injection platform run on a Xilinx XUPV5-LX110T board, 

containing a Xilinx Virtex 5 XC5VLX110T FPGA device. 

This error injection platform relies on an error detection 

scheme, in our case, the one presented in [8]. It uses LUT-

level DMR and the device’s embedded carry chain to 

create an error detection bit for each of the device’s slices. 

Bundling these all the error detection bits together, we 

form the error signature for that bit. 

With the error detection in place, the injector platform 

exercises the Circuit Under Test (CUT) buy reading the 

configuration memory of a single frame through the 

Internal Configuration Access Port (ICAP); it then flips 

one bit in the read configuration and writes back this 

“errored” configuration on the device. The platform then 

excites the CUT by creating several pseudo-random input 

vectors by means of LSFR. While exciting the circuit, if 

one or more bits on the error signature turn on, the 

platform sends to a host PC the frame address being tested, 

the error signature itself and a flag bit if that signature is 

the first one for the bit being tested using a serial interface. 

After all the bits in a frame’s configuration frame are 

tested, that frame’s original configuration is written back 

and the test of a new frame is begins. Because the 

signatures are sensible both to the flipped bit and to the 

input vector, it was chosen to limit the number of different 

signatures for the same bit to 20. 

To determine the signatures’ behavior for different 

types of circuits, we selected a set of 20 benchmark circuits 

from the MCNC suite; obtained at [9]. As the CUT and the 

injection platform are placed on the same device, it was 

necessary to limit the action of the injection platform on 

just the CUT and not on itself by the use of placement 

constrains to create an Area Under Test (AUT) in which 

the CUT is placed completely and exclusively. 

To analyze the data collected, we wrote a C++ 

application to map the different signatures and then 

calculate for each signature the optimal beginning frame 

for scrubbing process. The application also calculates the 

MTTR for the standard scrubbing approach. An example 

of the optimum starting position for two signatures is 

shown in Figure 2 as the two black marks on the horizontal 

axis. As the errors are sensitive to the routing and 

placement choices of the synthesis tools, it is essential that 

this information is kept in the final design. It is possible to 

achieve this by the use of incremental design flow, among 

other means such as placement and routing constraints. 

(2)           
otherwise. ,1

 if  ,
),(










PBifPE
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Table 1. Benchmark circuits 

Circuit LUTs FFs PIs POs SSize 

alu4 402 0 14 8 192 

apex2 798 0 39 3 395 

apex4 655 0 9 18 332 

bigkey 575 224 264 197 354 

clma 1269 34 384 82 609 

des 550 0 256 245 355 

diffeq 470 244 29 3 234 

dsip 635 224 230 197 370 

elliptic 143 71 20 2 73 

ex1010 487 0 10 10 215 

ex5p 128 0 8 63 81 

frisc 1718 853 21 116 894 

misex3 699 0 14 14 349 

pdc 1253 0 16 40 603 

s298 17 14 5 6 11 

s38417 1709 1447 30 106 884 

s38584.1 2001 1233 40 304 1080 

seq 846 0 41 35 430 

spla 221 0 16 46 114 

tseng 598 260 53 122 337 

Avg. 758.7 230.2 74.95 80.85 395.60 
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5. EXPERIMENTAL RESULTS 

The list of the tested circuits from the MCNC suite is 

shown in Table 1, along with the resources used (pre- 

DMR), number of Primary Inputs (PI), number of POs and 

the signature size (post DMR) in bits. The circuits were 

tested according with the procedure described in section 4 

and the error signatures were recorded and processed in a 

host PC. 

All results assume a scrubbing interface operating at 

the maximum speed of the Virtex 5 SelectMAP interface, 

which is a 32-bit wide port at 100 MHz. It is also taken 

into account the time required to issue a write command to 

the interface (25 cycles in our implementation) and to write 

a dummy frame, which is required by SelectMAP. Such 

costs represent only 0.39 % and 1.9% of the total MTTR 

for standard and shifted scrubbing respectively. The 

MTTR was measured, in µs, for a standard scrubbing 

approach and for the shifted scrubbing. The obtained 

results are presented in Figure 3, together with the 

measured reduction in the MTTR. It can be seen that the 

gains in MTTR reduction are significant, with a minimum 

reduction of 77 % for the ex5p circuit and a maximum 

reduction of 86 % for the des and pdc circuits. The mean 

reduction for the 20 benchmark circuits was 80.85 %. 

6. CONCLUSION 

In this paper we have examined the possibility of reducing 

time needed to repair the configuration of a SRAM-based 

FPGA with a novel approach, using a shifted scrubbing 

process. By using a fine-grain error detection scheme allied 

with partial reconfiguration, it is possible analyze the 

circuit and discover information that allows us to precisely 

identify the frame with a configuration error and restore its 

correct state. The technique was evaluated through 

exhaustive testing with an error injection platform. The 

obtained results show that is possible to expect MTTR 

reductions of over 85 % for many of the benchmarked 

circuits. These results are very encouraging to further 

pursue optimizations of this technique. 

Such a future work could see the detection and the 

signature translator circuits allied with a TMR scrubbing 

controller offering logic designers the advantages of 

SRAM-based FPGAs with self-repair capabilities. 
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ABSTRACT
Reconfigurable computing systems, such as FPGAs, provide
great promise for on-the-fly adaptive computation. Such
systems can be modified while in use, to deal with newly
arriving computational tasks. However, how to adapt, and
with respect to what objectives, is not yet well established.
Typically, one might be interested to achieve an allocation
of tasks, as they arrive, to differently sized regions of the
FPGA, in order to provide the most efficient computation.
At the same time, it is important to also maintain healthy
on-chip temperature. In this paper, we propose a novel de-
scription of this dynamic FPGA temperature management
problem. We formulate the problem as a dynamic multi-
objective optimisation problem, with three objectives and a
time-linkage characteristic. We discuss the implications of
the availability or otherwise of a model of the FPGA, and
propose the use of evolutionary algorithms as a method to
tackle the problem.

1. INTRODUCTION
A current trend in field-programmable gate array (FPGA)
technology is an increase in the number and density of pro-
grammable logic components. However, increased density
results in both higher and uneven chip temperature distri-
butions (hot spots), the management of which is becoming
increasingly important [1]. One factor that influences tem-
perature is the distribution of tasks across the chip. This
calls for efficient, temperature-aware methods, able to map
incoming tasks and migrate existing tasks to cooler regions,
such that the overall temperature is kept as low as possible
and hot spots are avoided. However, migrating tasks which
are already executing incurs an overhead in terms of exe-
cution time that should also be avoided. In this paper, we
formalise the thermal management of FPGAs as a dynamic
multi-objective optimisation problem. The task is to find a

This research was conducted in the EPiCS project and received fund-
ing from the European Union Seventh Framework Programme under grant
agreement no 257906. http://www.epics-project.eu/ The au-
thors would like to thank Markus Happe, Andreas Agne, Christian Plessl
and Marco Platzner for their contribution to fruitful discussions.

mapping of tasks to computational cores at a series of de-
cision points, with the aim of achieving an efficient trade-
off between conflicting objectives. Though in this paper
we focus on FPGAs, the problem definition and proposed
solution generalise beyond current technology, and we ex-
pect will apply equally to future massively parallel recon-
figurable computing platforms, where dynamic temperature
management will have an even bigger role to play.

2. BACKGROUND AND RELATED WORK
Modern FPGAs allow partial reconfiguration, where only a
part of the FPGA is reconfigured (for example, a new piece
of functionality is placed onto a currently idle region of the
chip) while the rest of the FPGA remains active and con-
tinues to operate [2]. To enable granular chip temperature
sensing, the FPGA may be partitioned into a regular grid of
tiles [3]. A sensor is placed on each tile, which records the
tile’s temperature periodically. Processing elements (called
cores in this paper) are laid over at least one tile. Figure 1 il-
lustrates this idea whereby a 10×15 tile FPGA is configured
into eight cores, occupying varying sized regions.

CoresTiles

Fig. 1: Illustration of a multi-core FPGA with different sized
cores and temperature sensing tiles. Example tiles and cores
are indicated.

A number of dynamic thermal management techniques have
been developed, which aim to control a chip’s temperature
[4, 5] at runtime. Our main contribution is to formulate the
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problem formally, as a dynamic multi-objective optimisa-
tion problem. A clear formalisation of the FPGA temper-
ature management problem helps us to gain a deeper un-
derstanding of the problem and various hidden factors and
assumptions that are associated with it. It helps us to focus
on the most important challenges and thus to propose most
appropriate solutions.

Evolutionary computation (EC) has a long and successful
history of application to complex optimisation problems [6].
The main idea of evolutionary algorithms, of which there are
now many variants, is to maintain a population of candidate
solutions to a problem (called individuals), which are eval-
uated against an objective function (called a fitness function
in the parlance of EC), which defines the problem to be opti-
mised. Based on the fitness of candidate solutions, they are
selected (analogously to natural selection in biological evo-
lution), before undergoing a perturbation (called mutation in
EC), and optionally some recombination between individu-
als in the population. This results in a further generation
of candidate solutions, which are then evaluated against the
fitness function. The process iterates, typically until a time
budget is exhausted, or a suitably optimal solution is found.

Relatively recently, EC has also begun to be applied to dy-
namic optimisation problems [7]. These are problems where
there are multiple decision points, each at which a solution
is implemented. Crucially, between these multiple decision
points, the problem may have changed. In the case where
the changes are incremental, i.e. the objective function at
time t, ft has some similarity to that at a previous time, e.g.
ft−1, then the incremental exploratory nature of evolution-
ary algorithms lends them well to the adaptation of solutions
between decision points, since it acts to transfer knowledge
from past problem instances to the current one. A more for-
mal definition of a dynamic optimisation problem is given
in [8]. A more comprehensive treatment of the topic is pro-
vided by a recently edited volume [9].

Several performance measures have been developed for evo-
lutionary dynamic optimisation [7, 8]. Depending on the as-
sumptions present in the real world problem, different per-
formance measures may be more appropriate. Firstly, the
online performance metric [7] is defined as the sum or aver-
age of all fitness evaluations over the entire problem:

Fonline =
∑

t∈T ′

ft(x) (2.1)

where T ′ is the set of all time points at which fitness may be
evaluated, ft is the fitness function at time t ∈ T ′ and x is a
candidate solution to be evaluated.

The online measure is appropriate in the case when there
exists no simulation or mathematical model of the prob-

lem, and therefore each and every evaluation must be carried
out in the real world. In this case, every fitness evaluation
counts. This has significant implications for the exploratory
behaviour of the algorithm, since any bad individuals gener-
ated through exploration of new regions of the search space,
impact directly upon overall performance.

In the case when either a model of the problem may be as-
sumed, or else when the algorithm may obtain the use of
the real-world problem instance during a training phase that
does not impact upon problem performance, we may em-
ploy an offline performance measure. An original offline
performance metric was defined by Branke [7], which takes
the average of the best individual found so far, at each time
step. As Branke points out however, this does not account
for the case when an individual from a previous time has a
reduced fitness at later time points. Several variants of of-
fline performance have since been defined in the literature,
though they are typically tied either to generations (as in the
best of generation measure) or else to detected changes (as
in the modified offline measure) [8].

In the FPGA temperature management problem as described
in this paper, it appears more intuitive to tie a possible offline
performance evaluation to discrete decision points, which
correspond to opportunities to reconfigure the FPGA. In this
case, we define offline decision-based performance to be:

Foffline =
∑

t∈T
ft(x) (2.2)

where T ⊂ T ′ is the set of time points at which a decision
is made and a solution implemented in the FPGA, a subset
of the full set of time points at which the evolutionary algo-
rithm performs fitness evaluations (on the model). Note that
a decision may involve making no change to the FPGA rel-
ative to the previous decision, which may be desirable in the
case when no better solution has been found in the interim.

In addition to being a dynamic optimisation problem, the
FPGA temperature management problem is inherently multi-
objective, since we are concerned both with computational
performance of the chip as well as managing the chip’s tem-
perature. Multi-objective optimisation problems are a class
of optimisation problems in which our aim is to simultane-
ously optimise two or more objectives [10]. Since the objec-
tives are often in conflict, we cannot typically find solutions
which obtain the global optimum for all objectives simulta-
neously. Instead, we aim to find Pareto-optimal solutions,
i.e. those which cannot be further improved on one objec-
tive, without being strictly worse on at least one other ob-
jective. A preference model is then used to rank the found
Pareto-optimal solutions, and to select one for implementa-
tion. Evolutionary computation has also long been success-
fully applied to multi-objective optimisation problems [11].
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Evolutionary algorithms have been used to solve several op-
timisation problems arising in FPGA configuration (e.g. [12,
13]). However, prior work has not considered run time re-
configuration as a dynamic optimisation problem, where mul-
tiple decisions are made during run time, as the problem
changes with unforseen incoming tasks and the effect of past
decisions. Instead, these problems consider the entire con-
figuration over time as a static optimisation problem to be
solved ahead of time.

The problem of determining task placement online in par-
tially reconfigurable FPGAs has also been tackled using evo-
lutionary algorithms [14]. However, this early work did
not consider the problem over time, as a dynamic optimi-
sation problem. Instead, evolutionary algorithms were used
to solve multiple independent task rearrangement problems
during run time. This assumption of independence ignores
the relationship between decisions, and cannot account for
time linkage. Additionally, the work did not consider tem-
perature, and though multiple performance-relevant metrics
were used, a multi-objective approach was not taken. The
metrics were instead combined into a single scalar objective
to be optimised. Crucially however, Middendorf et al. [14],
showed the effectiveness of using evolutionary computation
for online management of partially reconfigurable FPGAs.
In this paper, we present the first formulation of the problem
as a dynamic multi-objective optimisation problem, which
allows for run time optimisation, considering trade offs be-
tween conflicting objectives as well as time linkage. Our
formulation is also the first to consider temperature as an
additional explicit objective in such an optimisation prob-
lem, using real time readings. This is considered alongside
task performance objectives, in a multi-objective setting.

3. PROBLEM FORMULATION
In the dynamic FPGA temperature management problem,
we seek to schedule incoming tasks and migrate tasks cur-
rently in execution, during run time, in order to:

1. Minimise average chip temperature,

2. Minimise spatial temperature variations (hot spots),

3. Minimise the total time taken to execute all tasks.

We consider temperature measurement at the granularity of
a tile, a small surface area over which a physical sensor
records the temperature. A core is a processing element on
which computation can be carried out. These are depicted in
Figure 1. The configuration in which tasks are assigned to
cores has an impact on the resultant chip temperature land-
scape over time. In addition, cores may be heterogeneous,
such that, depending on which core it is executed, a task
may take a different amount of time to complete, and may
generate a thermal contribution with a different distribution.

3.1. Notation
Our problem definition makes use of the following notation:

• A finite set of discrete time intervals over which the
FPGA is to be managed, T = {0, 1, 2, 3, . . . tmax},
s.t. T ⊂ N0 and tmax = |T |+ 1.

• A single task in the set of tasks which, at time t, have
arrived but have not yet been completed, τ ∈ Tt.

• The arrival time of a task, α :
⋃
t∈T Tt → T .

• The completion time of a task, φ :
⋃
t∈T Tt → T .

• A fixed set of processing cores,C =
{
c0, . . . , c|C|−1

}
,

able to process incoming tasks.

• A notional waiting core, w, to which a task may be
assigned to indicate that it is in a waiting state (i.e.
the task is not currently being executed).

• A notional unusable core, u, to which a grid tile may
be mapped to indicate that it measures an unused area
of the FPGA.

• A set of grid tiles, G = {g0,0, g0,1 . . . , gx,y}, used for
temperature sensing; x and y denote the number of
horizontal and vertical tiles, respectively.

• A mapping of grid tiles to cores, σ : G → C ∪ {n},
indicating the layout of the FPGA. σ is required to be
surjective.

• A mapping of tasks to cores at time t, µt : Tt →
C ∪ {w}. µt is required to be injective, except that
many tasks may be mapped to the waiting core, w.

• A reading of each tile’s temperature at time t, θt :
G→ R, s.t. t ∈ T .

• The ambient chip temperature, Θambient.

• The total workload of a task, in (arbitrary) workload
units, ω :

⋃
t∈T Tt → N

• The current progress of a task, more precisely a counter
indicating the next workload unit of a task to be exe-
cuted, λ :

⋃
t∈T Tt → N.

• The task-core workload rate, ρ : ∪t∈TTt×C∪{w} →
N (i.e. how much of a task’s workload is completed
per time interval by a given core). ρ(τ, w) is defined
to be 0 for any τ .

• The task-core reconfiguration penalty, π : ∪t∈TTt ×
C ∪ {w} → N (i.e. the time taken, in workload units,
to reconfigure a given core to execute a given task).
E.g. π(τ, c1) indicates the workload not carried out
during a time instance, when migrating task τ to core
c1. It is assumed that π(τ, c) ≤ ρ(τ, c) for all τ and c,
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i.e. that all migrations may be completed within one
discrete time step.

• The task-tile thermal contribution, δ : ∪t∈TTt ×G×
N×C×Σ→ R (i.e. how much temperature contribu-
tion a task makes to a tile, for a given workload unit
of that task, when running on a given core). Σ rep-
resents the space of possible grid-tile mappings, i.e.
possible instances of σ. δ(τ, g, x, c, σ) is undefined if
x > ω(τ), for all τ and any g, c and σ.
Typically, the thermal contribution of a task τ to tile g
occupied by core c running task τ (i.e. σ(g) = c and
if µ(τ) = c) during one time step will be∑λ(τ)+ρ(τ,c)
x=λ(τ) δ(τ, g, x, c, σ), except when τ is migrated

to c in that time step, in which case the thermal con-
tribution will be

∑λ(τ)+ρ(τ,c)
x=λ(τ)+π(τ,c) δ(τ, g, x, c, σ).

If the core does not occupy the given grid tile, i.e.
σ(g) 6= c then δ(τ, g, x, c, σ) = 0 for any τ and x.
In this case, any heat on tile g due to task τ will be
through dissipation through the chip, and not due to a
direct contribution.

3.2. Assumptions
We make the following simplifying assumptions:

• Workload rates ρ do not vary with temperature.

• For a given task and core, the task-core workload is
constant throughout the lifetime of the task.

• Cores which complete a task during one time interval
generate a thermal contribution as if they had executed
that task for the entire time interval.

• Reconfiguration itself does not generate any heat.

• There are no data dependencies between tasks.

Additionally, we assume that since tasks arrive over time, no
information about them is available until they have arrived.
Therefore, one cannot reason about Tt+n, where n ≥ 1, at
time t, since those tasks have not yet been seen.

3.3. Problem Framework
A problem instance begins with initial temperatures, θt(g) =
Θambient for all g ∈ G. The problem instance iterates:

1. Initialisation:

(a) t = 0.

(b) Arrival of first tasks:
Tt = {τ : τ ∈ ⋃s∈T Ts, α(τ) = 0},
the set of tasks arriving at time 0.

(c) Since no task is running when it arrives,
µt(τ) = w, for all τ ∈ Tt.

(d) Set counters to the start of each arriving task: for
all τ ∈ Tt, λ(τ) = 1.

2. t = t+ 1.

3. Measure temperature on each tile:
Record values for θt(g), for all g ∈ G.

4. Decide on mapping µt(τ) for each τ ∈ Tt.
5. Reconfigure FPGA according to µt, if necessary.

6. Carry out computational work:
For each τ ∈ Tt,

λ(τ) =

{
λ(τ)− ρ(τ, µ(τ)), if µt(τ) = µt−1(τ)

λ(τ)− ρ(τ, µ(τ)) + π(τ, µ(τ)), otherwise.

During this step, the thermal contributions are made
and heat dissipates.

7. Build Tt+1:

(a) Remove completed tasks:
Tt+1 = Tt \ {τ : τ ∈ Tt, λ(τ) > ω(τ)}

(b) Record completion times of completed tasks:
φ(τc) = t,
for all τc ∈ {τ : τ ∈ Tt, λ(τ) > ω(τ)}

(c) Arrival of new tasks:
Tt+1 = Tt+1∪{τ : τ ∈ ∪s∈TTs, α(τ) = t+1}.

(d) Set initial task state for new tasks:
For all τ ∈ Tt+1, if α(τ) = t+ 1:

i. µt(τ) = w, and

ii. λ(τ) = 1.

8. If t < tmax, go to step 2, otherwise end.

3.4. Instantaneous Optimisation Task
In the above problem framework, the task is to make the
decision at each point 4, to decide the mapping from tasks
to cores. This is encapsulated at each time point t, in the
mapping µt, which an optimisation algorithm is free to set.
Informally, we described the objectives which we would like
to make this decision with respect to, at the start of section 3.
We now formalise these objectives for a given time point, t:

1. Minimise average chip temperature, specifically:

minimise f1t(µt) =
1

|G|
∑

g∈G
θt(g) (3.1)

2. Minimise spatial temperature variations (hot spots).
There are various ways in which this could be tack-
led. Here we take a minimax approach:

minimise f2t(µt) = max (|θt(g)− θt(h)|) (3.2)
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∀g ∈ G,∀h ∈ ν(g)

where ν(g) is the set of all tiles in the Moore neigh-
bourhood of g.

3. Minimise the total time taken to execute all tasks. At
a particular time instance, this may be seen as max-
imising the workload carried out at this time, for all
currently existing tasks:

maximise f3t(µt) =

∑

τ∈Tt
ρ(τ, µ(τ))−

{
π(τ, µ(τ)) if µt(τ) 6= µt−1(τ)

0 otherwise.
(3.3)

The performance of a given mapping µt, with respect to the
instantaneous optimisation objectives, f1t, f2t and f3t is cal-
culated based on temperature readings θt, the workload and
penalty rates ρ and π, and an observation of required recon-
figurations (mappings and migrations), due to a difference
between µt−1 and µt. In a naive way, we may now tackle
the problem of selecting a µt for step 4, evaluating candi-
dates for µt against the three objectives.

3.5. Objectives Over Time
Although decisions are made at each of the time points in
T , from the problem perspective, we are interested in the
objectives over the entire lifetime of the management of the
FPGA, i.e. over all of T . Therefore, when evaluating the
performance of a particular algorithm for determining task
to core mappings, we must define metrics which quantify
these over time. In section 3.4 we defined objectives for
a naive decision at time t. There are many ways in which
we could define complementary performance metrics for an
entire problem instance, e.g. by borrowing some ideas from
robust optimisation over time [15, 16, 17].

Here, we propose three performance metrics over time:

1. Minimise average chip temperature over time:

minimise f1 =
1

T

∑

t∈T
f1t(µt) (3.4)

2. Minimise spatial temperature variations over time:

minimise f2 =
1

T

∑

t∈T
f2t(µt) (3.5)

3. Minimise the total time taken to execute all tasks. Since,
assuming all tasks completed, a simple summation of
f3t would not capture penalties (i.e. time wasted per-
forming migrations), and a simple count of migrations

would ignore differences in ρ(τ, c) as c varies, we in-
stead measure finish times of tasks:

minimise f3 =
∑

τ∈⋃t∈T Tt
φ(τ) (3.6)

It is important to note, that while decisions are made locally
within each time step, the performance of any algorithm
generating such decisions should be evaluated in terms of
these three objectives calculated over all of T . Importantly,
whether these objectives are measured online or offline will
depend on the availability of a simulation or mathematical
model of the problem at each decision point, with sufficient
fidelity to provide meaningful fitness evaluations between
decision points. Since f1 and f2 depend on θt values, which
must either be measurements from the real system at time t
or predictions from a model, then the lack of a model means
that each and every fitness evaluation must be carried out on
the real system. Furthermore, in a possible extended version
of this problem, ρ may not be known, or may vary, and may
indeed also need to be a runtime observation.

3.6. Time linkage

Though f3t considers µt−1 explicitly, f1t, f2t and f3t are
driven by various µs where s < t. This is since the cur-
rent state of the FPGA at time t will be dependent on work
carried out prior to time t. Specifically, both the current tem-
perature of the grid tiles and the currently running tasks on
each core, can alter the values for each of f1t, f2t and f3t
for a given input. In the language of evolutionary dynamic
optimisation, this is referred to as time linkage [18].

The implication of this is important, since the quality of de-
cisions made at time t is affected directly by decisions made
prior to t. In some cases, this means that a seemingly good
decision at one point in time, acts to limit the quality of a de-
cision at a later point in time. For example, greedily placing
an incoming task onto the core which will complete that task
the quickest, may mean that a later task, which would ben-
efit more from being placed on that core, cannot be placed
there without incurring a penalty incurred by migrating the
first task away first. Thus, greedily optimising the instanta-
neous objective functions, f1t, f2t and f3t, is very likely not
to be optimal in terms of the objectives specified in f1, f2
and f3. An high performing optimisation algorithm should
therefore be designed to account for this time-linkage, in the
presence of uncertainty over future incoming tasks.

4. CONCLUSIONS AND OUTLOOK
In this paper we have defined a novel formulation for the
problem of dynamically managing partially reconfigurable
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FPGAs, with respect to completion time of incoming tasks
and the management of on-chip temperature. The problem is
formulated as a dynamic multi-objective optimisation prob-
lem, which enables us to explore the trade-off between com-
putational efficiency, heat generation and temperature im-
balance. Although three objectives were proposed in this
paper, our formulation can easily accommodate additional
objectives, e.g., energy consumption of the chip, security,
reliability, etc. All these are important issues, which can
now be considered under the same problem formulation.

In tackling this problem, we propose the use of evolution-
ary algorithms, since these have been used successfully for
both dynamic and multi-objective problems for many years.
Their incremental exploratory nature enables them to re-use
information from previous time instances, for solutions in
the present, when the problem consists of a sequence of re-
lated problem instances over time. The performance of such
algorithms should be compared with that of existing heuris-
tics, such as those described by Happe [5, pp.73–81].

We highlighted a number of challenges which need to be ad-
dressed in order to tackle this problem. Firstly, the issue of
time linkage means that optimisation algorithms which are
greedy with respect to time, will likely not be optimal over
the entire problem instance. Instead, algorithms will need
to make predictions about future tasks and chip behaviour.
Secondly, techniques from both dynamic and multi-objective
optimisation will need to be combined in this problem which
contains both characteristics. Thirdly, a question arises on
the availability of a suitable simulation or mathematical model,
which would enable an evolutionary algorithm to evaluate
candidate solutions between decision points. Ultimately, the
availability (or otherwise) of such a model will drive the se-
lection of appropriate evolutionary techniques.

Finally, it will be important to evaluate the overhead of the
computational work required to apply evolutionary techniques
to tackle this problem at runtime, in terms of the objectives
considered here. Depending on the exact form the evolu-
tionary algorithm takes (importantly, e.g. either online or
offline), this overhead may actually make things worse. In-
deed, regardless of the approach taken, the costs as well as
benefits of a given technique should be considered. One ap-
proach could be for the decision process to be seen as a task
itself, whose impact is evaluated as part of the whole system.
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ABSTRACT
Self-adaptive systems need to monitor themselves, to check
their internal behaviour and design assumptions about run-
time inputs and conditions. This kind of monitoring for
self-adaptive systems can include collecting statistics about
systems themselves which can be computationally-intensive
(for detailed statistics) and hence time-consuming, with
possible negative impact on self-adaptive response time. To
mitigate this limitation, we extend the technique of in-circuit
run-time assertions to cover statistical assertions in hardware.
The presented designs implement several useful statistical
operators that can be exploited by self-adaptive systems. To
illustrate the practicability and industrial relevance of our
proposed approach, we evaluate our designs, chosen from
a class of possible application scenarios, for their resource
usage and the tradeoffs between hardware and software
implementations.

I. INTRODUCTION

Self-adaptive systems can configure themselves to flexibly
deal with changing environments after they are deployed.
The configuration itself is systematically guided by means
of system self-monitoring to aid decisions about changing
modes, or to check design assumptions about runtime data
and conditions or their internal operation. Such monitoring
could check elementary Boolean conditions or, more gener-
ally, could process collected run-time system data, feeding
a process of deciding whether or how the system can be
adapted. The response time to adaptation is a fundamental
feature characterizing self-adaptive systems. For the class
of applications from the avionics domain we investigate, a
fast response time to adaptation is crucial and motivates
our advocated approach, presented in the rest of the paper.
Gathered system data can be used for many purposes: for
example, design assumptions about input range, used to
optimize operator bit-widths, can be checked by assertions
about the standard deviation of the input.

In this paper, we propose in-circuit, statistical assertions,
compiled into the hardware part of a software-hardware

design as a dedicated self-monitoring facility for self-
adaptive systems, with a fast response time to adaptation.
Compared to the proposed in-circuit assertions that can
compute in parallel with the rest of the design, purely
software-implemented assertions need to wait until the
hardware has finished computing its results before they
can process their own tasks. Moreover, efficient hardware
designs are often deeply-pipelined, operating on large
batches of data, further prolonging the time until software
assertions can start processing. Additionally, by prepro-
cessing potentially large amounts of data, in-circuit data
gathering can improve use of limited bandwidth between
hardware and software of the self-adaptive system triggering
and controlling system adaptation. In summary: in-circuit
assertions are the necessary precondition to realize fast
response times to adaptation not realizable by pure software
assertions.

Figure I provides a structural overview of our approach.
A hardware datapath is instrumented by in-circuit statistical
operators which compute relevant statistics about the design.
These are then sent back to a software engine running a self-
adaptive system. The software builds up the self-adaptive
representation which is used to control reconfiguration
of the system. It should be mentioned that whilst we
target a software-hardware system setting, our approach
is not limited to this setting at the outset. The software
could likewise run on a soft processor within a Field
Programmable Gate Array (FPGA) fabric.

This paper makes the following contributions:
• The design and implementation of in-circuit statistical

assertions, which can be used by self-adaptive systems
to monitor themselves and control system adaptation;

• A case study on avionics systems, showing the potential
of in-circuit statistical assertions;

• Evaluation of tradeoffs between assertion implemen-
tations in software and in hardware, showing the
advantages of our proposed in-circuit assertions.

The rest of the paper is organized as follows: the next
section describes related work. Section III shows our designs
for assertions and implementations for Maxeler systems;
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section IV is a brief case study for avionics. Section V
evaluates our implementation; section VI concludes and
suggests future work.

II. BACKGROUND
Runtime verification: several researchers have used tem-

poral logic for runtime verification; for example, Reinbacher
et al. [1] implement hardware temporal logic monitors
for a software system running on a soft processor on
the same device. Calinescu et al. [2] propose that self-
adaptive software needs quantitative runtime verification;
our statistical in-circuit assertions could complement such
approaches.

Assertion-based verification allows the use of Boolean
and temporal assertions for debugging designs in simula-
tion [3], extended to in-circuit assertions by Curreri [4].
We extend in-circuit assertions with statistical operators; in
our approach, failed assertions do not necessarily indicate
errors, but may be the trigger for a self-adaptive system to
adapt or reconfigure itself.

Statistical assertions have been proposed by Dinh et
al. [5], as a debug-time method to reason about large parallel
programs – users can reason with derived metrics, rather
than raw program output. The assertions are implemented
efficiently using a map-reduce style computation. We use
statistical assertions for run-time monitoring of reconfig-
urable hardware-accelerated systems.

III. IN-CIRCUIT STATISTICAL ASSERTIONS
This section shows our designs for in-circuit statistical

assertions. Our assertion language comprises C-language
style Boolean operators, augmented by statistical primitives.

We choose the C language as it is familiar to many designers.
The set of statistical primitives is as follows:

• mean(e1), the mean value of expression e1;
• stdev(e1), the standard deviation of expression e1;
• variance(e1), the variance of expression e1.
We choose these as a useful set for expressing statistical

conditions; future work could add further statistical opera-
tors such as covariance, skewness and kurtosis, or limit the
number of cycles over which the statistics are calculated,
potentially reducing hardware resources.

The following shows the grammar of our statistical
assertions language in extended Backus-Naur form:

e = a
| e bop e
| uop e
| mean(e)
| stdev(e)
| variance(e)

bop = == | != | < | > | ...
uop = + | - | ! | ˜

where bop represents any C binary operator, uop any C unary
operator and a any atomic expression (literals, variables,
constants). This language allows the user to combine both
Boolean and statistical operators.

Online algorithms for calculation of statistical met-
rics such as mean, variance and standard deviation are
known [6] [7], which involve a single pass over the input
data, using an accumulator and the current input element.
Whilst this may seem suitable for streaming implemen-
tations, they contain feedback owing to the accumulator.
Chan et al. developed a pairwise algorithm for variance [8]
which can be parallelized; for N input elements, naively
implementing this algorithm on streaming systems requires
O(NlogN) hardware. Chan et al’s algorithm denotes the
sum and mean of data points xi as Tij and Mij respectively:

Tij =

j∑

k=i

xk Mij =
1

j − i+ 1
Tij

and the sum of squares Sij :

Sij =

j∑

k=i

(xk −Mij)
2

calculated by their pairwise algorithm:

S1,2m = S1,m + Sm+1,2m +
1

2m
(T1,m − Tm+1,2m)2

We propose two designs suitable for streaming systems: a
systolic design adapted from Chan’s parallel algorithm, and
a C-slowed variant of the online algorithm. Figure 2 shows
the datapath for the systolic design, combining stream offsets
with Chan’s pairwise operators for calculating variance or
mean; for clarity, we omit the calculation of Ti,j , which
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Fig. 2. Systolic partial calculation of variance using pairwise
operators.

has the same pattern. Note that the leftmost operator can
be optimized, because Si,i = 0 (the variance of a single
point is zero). The systolic design uses the observation that
in a streaming system, iterating through the input data in
order, sums of neighbouring elements can be accessed by
stream offsets, so using Chan et al’s notation:

T1,2k = T1,2k−1 + T2k−1+1,2k

= T1,2k−1 + offset(T1,2k−1 ,−2k)
where offset(e, n) means the value of expression e
sampled n cycles in the past; S1,2k is calculated in the
same way. Unlike the naive implementation of Chan et
al’s algorithm, which requires O(NlogN) hardware, this
requires O(logN) statistical operators plus O(N) delay
elements used to implement the offset operation.

Note that this only calculates part of the variance,
specifically the local variance around each sample; however,
it greatly reduces the amount of data sent back to software.
The design consists of repeating units of the pairwise
operator and stream offsets to delay the input. Each
repeating unit reduces both the output data and the remaining
calculations to be done in software by half, so K units
reduces it 2K-fold.

Implementation targeting Maxeler streaming designs: we
choose Maxeler streaming systems to implement our designs,
though the approach is not Maxeler-specific, and can be
ported to other design descriptions such as Verilog and
VHDL. We focus on a systematic approach to translating as-
sertions into Maxeler designs; future work could implement
a compiler from Maxeler designs extended with statistical
assertions into the base language.

The Maxeler system generates streaming designs, where
inputs and outputs are large arrays used as streams. Each

output element is calculated from corresponding elements
in one or more input streams; offsets allow reading from
neighbourhood stream elements. The user programatically
builds a datapath using a domain-specific language based on
Java. The control path may be counters or state machines
generated from another domain-specific language.

Maxeler tools compile designs into hardware description
languages and control FPGA vendor tools to build a
reconfigurable device bitstream implementing a design.
Software can interact with the generated hardware using a
Maxeler application programming interface to configure the
FPGA device with the bitstream and run on user data stored
in C arrays. The Maxeler tools automatically pipeline the
datapath, resulting in deeply-pipelined operators at a high
clock rate. This works well for feed-forward designs, but
feedback requires some manual intervention and reordering
or duplicating of input data.

IV. CASE STUDY: AVIONICS SYSTEMS
Avionics systems are electronic systems used for control

or information in the aviation or aerospace industries [9].
Self-adaptive systems with a fast response to adaptation

(where fast means quicker than 500ms), are promising
architectures for dedicated application scenarios in the
avionics and space-flight industry. Systems that profit from
architectures with fast response time to adaptation are:

• autonomous flying systems,
• special satellites,
• deep-space mission systems,
• exploratory space mission systems.
All these systems operate in environments that can not

fully be described right from the beginning and hence the
systems cannot be statically designed to cover and handle
all environmental settings. Furthermore, these systems
have strong constraints on power consumption, weight and
packaging volume. Additionally, these systems may never
be reachable after deployment.

We choose a 500ms limit as this duration fits perfectly
into most processing and control-loops of the systems and
application scenarios mentioned in the paper. Hence, if
we realize our self-adaptation and self-expression with
the configuration within this limit, it would seamlessly
fit into our systems, applications and the already available
developed systems.

We analyze the processing structure of these systems for
the functionality of guidance, navigation and orientation,
revealing that the processing is composed of different
blocks/kernels with inputs and outputs. Determining the
adequate bit-widths and hence precision for the inputs
and outputs is difficult and is today based on worst-case
assumptions involving unnecessary resources. An alternative
is to start with an initial, more optimistic design assumption
about the input/output range, used to optimize operator
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bit-widths. Such assumptions can be checked by assertions
about the standard deviation of the input and adapted by
another kernel-version accordingly if required. Obviously,
fast response time to adaptation is to avoid compromising
system functionality, and to simultaneously optimize the
system at run-time with respect to energy efficiency and
environmental adaptability.

V. EVALUATION

We evaluate our implementations of on-chip statistical
assertions showing the tradeoff between hardware and
software implementations. We compare: 1) scalability:
operator size versus hardware size; 2) software statistics
versus hardware-assisted: speed, bandwidth.

Experimental setup: we implement our designs using
Maxeler compiler version 2012.1 and Xilinx ISE 13.1.
Designs target a MAX3 system, containing a Xilinx
xc6vsx475t FPGA, with a speed goal of 200MHz. We
implement a single variance assertion, with 32-bit input
data in IEEE Single-Precision (SP) floating-point format,
one data element per cycle.

Figure 3 shows the effect of unroll factor on the area
resources for the systolic variance operator; the area is
measured in Look-Up Tables (LUTs), Flip-Flops (FFs) and
Digital Signal Processing (DSP) blocks. The area cost is
linearly proportional to the unroll factor (for LUTs and
FFs), but the output data reduction factor is exponential:
increasing the unroll factor by one halves the output volume.
For unroll factor 15, the data reduces by 215 and the variance
takes about 5% of flip-flops, 8% of other resources. For
LUTs and FFs there is also a small fixed cost which is due
to the Maxeler runtime system used to communicate with
the host. The cost in block RAMs (BRAMs) is exponential
in the unroll factor, as they are used to store delayed stream
elements used to calculate the offset expressions; however,
the cost is still modest even for large unroll factors.

The C-slowed design uses a small fixed area per assertion
(about 3.5% of LUTs, 2% of FFs for 32-bit SP variance).
For 32-bit SP data, the pipeline is 85 stages long, padded
to 128 stages. The data are reduced to 128 partial variances,
which can be further reduced to a single variance by Chan
et al’s method. The design runs at 300MHz.

Case study: avionics: we assume a hard 0.5s limit for
hardware run time. Figure 4 shows estimated run times
versus number of statistical assertions for both software and
hardware implementations. We assume the design is limited
by the bandwidth between software and hardware (MAX3
has 2GB/s maximum speed); stream length is 226, each
output is 4 bytes wide, so the run time with no assertions
is 0.15 seconds. Software calculations are limited to two
assertions within the time limit, because all 226 values must
be streamed across the bus for each exception. In contrast,
the C-slowed design summarizes 226 data to 128 values,
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meaning the time cost of each exception is much lower.
Systolic hardware designs allow the number of assertions to
be traded for hardware area. Note we do not include time
to calculate the variance on the host.

VI. CONCLUSION
To allow efficient monitoring for self-adaptive systems,

we design and implement in-circuit statistical assertions,
allowing designs to use several frequently-occurring sta-
tistical operators to express desired runtime properties of
design inputs, outputs and internal signals. Results show
that response time can be greatly reduced at a modest cost
in hardware area per exception.

Current and future work includes enlarging the set of
statistical primitives to allow more general assertions on
the state of the design. We would also like to explore
the interaction of the statistical operators with run-time
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reconfiguration. Statistical conditions can be used to decide
when to reconfigure. More generally, the statistics operators
themselves can be reconfigured, allowing the system to alter
the balance of configurable hardware between assertions
and computation depending on runtime conditions.
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ABSTRACT
This paper presents a SystemC-based framework for the sim-
ulation of smart spaces that focuses on energy aspects. In-
deed, an efficient energy management plays a key role for
the global reduction of carbon emissions. For this reason,
the design of energy-aware smart spaces, able to self adapt
to the surrounding environment, is becoming more and more
interesting from the research point of view. However, it
presents several challenges for their design, mainly due to
the complexity of these complex and distributed systems
and their cooperative behavior. This framework thus aims at
facilitating the design of such complex cyber-physical sys-
tems.

1. INTRODUCTION AND RELATED WORK

Energy sustainability is becoming a central point in research
to move towards a sustainable planet and research frame-
works, like European Union Horizon 2020 [1], are currently
encouraging to develop solutions to pursue these objectives.
In this context, in both academia and industry, there is a
growing interest for smart spaces [2]: they are environments
such as apartments, offices, museums, hospitals, schools,
malls, university campuses, and outdoor areas that are en-
abled for the co-operation of objects (e.g, sensors, devices,
appliances) and systems that have the capability to self or-
ganize themselves, based on given policies.

Thanks to their main characteristics, these cyber-physical
systems [3] are self-aware, heterogeneous and distributed
for an efficient management of the energy consumption. In-
deed, to realize these smart spaces, dozens of distributed
computation, perception and actuation modules are usually
adopted [4]. Sensors will gather a huge quantity of infor-
mation that must be elaborated from the computation nodes
and then efficiently transmitted to the actuators. For these
reasons, efficient hardware infrastructures, software systems
and design flows are in great needs. Dedicated techniques
for their design, implementation and validation are defini-
tively required, especially by means of simulation method-
ologies to analyze how the components affect each other and
the interaction with the external physical environment, espe-
cially when considering energy aspects.

Even if there exist many approaches for the energy man-
agement of smart spaces, also the evaluation of the dynamic
policies would be very attractive to self adapt the system to
the surrounding environment. In such a scenario, system-
level modeling through SystemC and TLM [11] has been
demonstrated [12, 13] a viable solution to easily describe
an overall system architecture and to simulate the computa-
tion of big amounts of data. On the other hand, an exam-
ple of simulation environment can be found in [14] where a
time-domain simulation environment for smart spaces with
probabilistic appliance events is presented, but the appliance
behavior is only represented as a Poisson random variable.
In [15] the Bit-Watt system is presented to evaluate the per-
formance of energy management in a home environment by
computer simulations. However, the physical behavior of
the surrounding environment is not actually simulated, po-
tentially limiting the analysis that the designer can perform.
Another simulator is presented in [16] to coordinate the ex-
ecution of the residence appliances to minimize system cost
assuming a time-of-use electricity rate structure.

In conclusion, to the best of our knowledge, it does not
exist any modular and extensible framework that allows to
efficiently design the systems (e.g., also integrating models
of newer appliances) and evaluate them (and their coopera-
tion) at different levels of abstraction, including the interac-
tion with the physical environment.

This paper thus introduces EA-SIM, a novel and open-
source framework for designing, simulating and validating
self-adaptive and energy-aware smart spaces. EA-SIM is
based on SystemC TLM-2.0 and it allows a functional val-
idation of the generated systems and also the analysis of
non-functional properties, such as performance and power
consumption, at different levels of abstraction. Moreover,
it can integrate the simulation of the physical environment
(e.g., thermal trends, power consumption) to validate the de-
cisions taken by the control units with respect to the infor-
mation gathered by the sensors. EA-SIM offers an extensi-
ble component library that allows to model the different ele-
ments of a smart space: the control units, the computational
nodes, the appliances, along with their sensors and actua-
tors. Moreover, it is also possible to associate local batteries
with each appliance and control their usage to reduce peaks.
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Fig. 1. High-level organization of the smart appliance (left)
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2. EA-SIM SIMULATION FRAMEWORK

An energy-aware system can be defined as a context-aware
architecture that can sense its physical environment, and adapt
its behavior accordingly. Therefore, in order to simulate
such kind of systems, it is necessary to create a framework
able to evaluate the concurrent activity of all the components
(i.e. the nodes), how they exchange the data and how they
consume energy with respect to the users’ requests and the
policies defined by the control unit. For this reason, we pro-
pose EA-SIM, a simulation framework based on SystemC
TLM-2.0 [11] that allows to easily evaluate the behavior of
an energy-aware smart space. In particular, different archi-
tectural solutions can be evaluated, as well as different poli-
cies to control the dynamic behavior of the overall system.
EA-SIM is an under development framework that allows to
design and to simulate energy-aware smart spaces that are
represented as composed of power generator nodes, appli-
ance nodes and energy boxes. It should be noticed that this
representation is flexible enough to represent a great variety
of different spaces but simple to use at the same time.

A power generator is a component that produces elec-
tric current as, for example, the one representing the incom-
ing current from the national power system. Also accu-
mulators (batteries) are modeled in the proposed simula-
tion framework. The use of batteries in a grid of appliances
has been proved to be effective [9]. In fact, supplying en-
ergy from accumulators during peak electricity consumption
times allows lowering peak demands and reduce both en-
ergy costs and carbon emissions. Furthermore, they can be
used to compensate for the variability of typical renewable
resources (e.g., wind, wave, solar), thus making the integra-
tion of such facilities more viable in practice [17].

In our view, two different appliances can be inserted in
the simulation: standard and “smart” appliances. A sim-
ple standard appliance does not provide any sensors, ac-
tuators or digital interface to customize the behavior that
can be modeled through mathematical models (including
electro-mechanical behavior) or through the profiling of ac-
tual users’ experience. A smart appliance is a more sophis-
ticated appliance, also providing a socket interface to receive

commands. It can have sensors to read the current status of
the appliance and actuators to modify the status. The repre-
sentation of such smart applicances is shown on the left side
of Figure 1. It is thus possible to lower peak demand and re-
duce both energy costs and carbon emissions. Furthermore,
storage devices can be used to compensate for the variability
of typical renewable electricity generation (e.g., wind, wave,
solar) and supporting their practical integration [17]. The
power switch is used to select which is the the current power
supply: the battery or the external power generator. A pro-
cessing unit (PU) coordinates all the other elements: this can
be connected to a Network Interface (NI - to communicate
with an external energy box), sensors and actuators through
a bus or similar communication infrastructures. The power
switch is then responsible for the selection of the right power
source for the appliance. The selection is performed by the
PU and it is based on the policies suggested by the external
energy box. Three situations are envisioned in a smart ap-
pliance: (1) the appliance is powered through the external
power socket and the battery is not recharging; (2) the appli-
ance is powered through the external power socket and the
battery is recharging; (3) the appliance is powered through
the internal battery. The processing unit is instead the mod-
ule responsible for the coordination of the entire smart ap-
pliance.

The energy box nodes (as shown on the right side of Fig-
ure 1) are adopted to monitor and manage all installed ap-
pliances, generators and accumulators (batteries). They are
designed to potentially elaborate a large amount of sensing
data and implement dynamic control policies. For such rea-
son, an energy box is an embedded and heterogeneous multi-
core architecture. Also a memory module can be available
in order to store temporary data. A network interface is re-
sponsible for the connection with the other nodes. More-
over, a energy box can be connected to the NI to provide
a remote interface to access features exported by the appli-
ances. It will also build profiles inferred from the behavior
of connected devices, for example to recommend and actu-
ate energy conservation policies.

3. CASE STUDY

This section presents two case studies as preliminary exam-
ples to show the validity of the proposed simulation frame-
work. Figure 2 shows the corresponding architecture. This
architecture contains one power generator and one energy
box to control the energy consumption of two appliances.
Then, only one of them is “smart”, i.e., it has been enhanced
with a power switch, a battery and finally a CPU to imple-
ment the policies decided by the energy box. To show the ef-
fectiveness of the proposed framework, different situations
have been evaluated. In all these cases, the charge of the bat-
tery is always maintained between 30% and 60%, as soon as
it enters in this interval. Moreover, the energy box imposes
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Fig. 2. Schema of the simulated architecture.
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Fig. 3. Results of experiment #1: two appliances with con-
stant energy consumption, where one of them is equipped
with a battery.

the smart appliance to use the power generator instead of
the battery for the first 30uts in the first example and for
20ut in the other ones. All the experiments have been con-
ducted through Synopsys Platform Architect [18] that offers
a GUI to easily connect all the components of the system,
execute the simulations and analyze the results.

In order to better understand the meaning of the case
study, it must be known that using EA-SIM it is possible
to set the desired units of measurement for both the energy
consumption and the time. In fact, based on the appliances
under analysis, the designer can configure the system to sim-
ulate the power, for instance, as mW or W. Then, based on
the granularity of the dynamic behavior to be simulated, the
evolution of time can be represented, for instance, in sec-
onds or minutes. As a consequence, since in this paper we
are only interested in analyzing the dynamic behavior of
the energy-aware system not from a quantitative but from

a qualitative point of view, in the rest of this work, the quan-
tity of energy is indicated in unit of energy (ue) and the time
is represented in unit of time (ut).

In the first experiment, the two appliances have a con-
stant consumption of 40ue/ut and the battery has a consump-
tion of 20ue/ut when it recharges. As shown in Figure 3, for
the first 30ut, the two appliances are powered through the
generator that thus consumes 80ue/ut (40ue/ut for each of
the two appliances). After 30ut, the energy box switches the
power source of the smart appliance to the battery and, as
it is possible to see, the battery starts to discharge and the
consumption of the power generator drops down to 40ue/ut
(since one appliance is still powered using the generator).
As soon the battery charge level is less than 30%, the energy
box decides to switch again the smart appliance to the gener-
ator. The energy provided by the generator is now 100ue/ut
since it has to power two appliances (40ue/ut for each of the
2 appliances) and the battery (40ue/ut).

Let us consider another experiment. While the the be-
havior of the battery is the same as before (it consumes
20ue/ut during the recharge phase), in this case the stan-
dard appliance (i.e., the one that is directly connected to the
power generator) has a different dynamic. In fact, it has a
step-based energy consumption, instead of a constant one.
More precisely the step function has a value of 10ue/ut in
the intervals (0;10) and (40;100) and 60ue/ut in the interval
(10;40). In this case, the behavior of the power generator be-
comes really interesting, as shown from its curve in Figure 4.
In fact, in the first 10ut, the drained energy is 50ue/ut since
the two appliances are consuming 10ue/ut and 40 ue/ut, re-
spectively, and the battery is not used (due to the pre-defined
policy of the energy box). In the interval (10;20), the battery
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Fig. 4. Results of experiment #2: the energy consumption
of one of the appliances is characterized by a step.

is then activated and the curve of the power generator drops
down to 60ue/ut (i.e., the consumption of the standard appli-
ance). An interesting phenomenon occurs at 10ut, where it is
possible to find a peak of 120ue/ut: this value is due the fact
that in that moment the battery starts to recharge (20ue/ut),
the smart appliance is not using the battery since it is in
charging (40ue/ut) and the standard appliance is still drain-
ing 60ue/ut. The other important interval that must be con-
sidered is the one between 57ut and 67ut: here the battery is
in use and consequently the power generator has to take care
only of the standard appliance (10ue/ut). These experiments
demonstrated that the proposed EA-SIM framework is ef-
fectively able to simulate complex behaviors of interacting
appliances in a smart environment, where the designer can
evaluate simple yet effective policies to control the energy
consumption of the system. For instance, it is possible to
use EA-SIM to explore different solutions to mitigate peaks
in the architecture, e.g., by changing the battery policies or
evaluating the behavior of different possible components.

4. CONCLUSIONS AND FUTURE WORK

We presented EA-SIM, a modular, open-source and extensi-
ble framework for supporting the design and the validation
of energy-aware smart spaces, allowing the easy evaluation
of different aspects at both hardware and software levels.

Future research is oriented to design efficient system ar-
chitectures and policies for supporting energy sustainability
of existing spaces. Moreover, novel guidelines will be also
investigated to suggest the design of future smart spaces.

Acknowledgments

The authors would thank Synopsys, Inc. that kindly pro-
vided the tools to support the design of the library compo-
nents and to perform the system-level simulations.

5. REFERENCES

[1] “European Commision Research and Innovation - horizon
2020,” http://ec.europa.eu/research/horizon2020/, accessed:
26/03/2013.

[2] “European Institute for Innovation and Technology ICT
Labs,” http://www.eitictlabs.eu/innovation-areas/smart-
spaces/, accessed: 26/03/2013.

[3] E. A. Lee, “Cyber physical systems: Design challenges,”
EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2008-8, Jan 2008.

[4] W. Xie, Y. Shi, G. Xu, and Y. Mao, “Smart Platform - a soft-
ware infrastructure for Smart Space (SISS),” in Proceedings
of ICMI, 2002, pp. 429–434.

[5] G. Wood and M. Newborough, “Dynamic energy-
consumption indicators for domestic appliances: envi-
ronment, behaviour and design,” Energy and Buildings,
vol. 35, no. 8, pp. 821 – 841, 2003.

[6] M. Erol-Kantarci and H. Mouftah, “Using wireless sensor
networks for energy-aware homes in smart grids,” in Pro-
ceedings of ISCC, 2010, pp. 456–458.

[7] “AlertMe - creating smart homes,” http://www.alertme.com,
accessed: 12/04/2013.

[8] “CurrentCost - save money and cut your electricity waste,”
http://www.currentcost.com, accessed: 12/04/2013.

[9] A. Mohd, E. Ortjohann, A. Schmelter, N. Hamsic, and
D. Morton, “Challenges in integrating distributed energy stor-
age systems into future smart grid,” in Proceedings of ISIE,
2008, pp. 1627–1632.

[10] N. Wade, P. Taylor, P. Lang, and P. Jones, “Evaluating the
benefits of an electrical energy storage system in a future
smart grid,” Energy Policy, vol. 38, no. 11, pp. 7180 – 7188,
2010.

[11] Accelera Systems Initiative, “http://www.accellera.org.”
[12] M. Damm, J. Moreno, J. Haase, and C. Grimm, “Using trans-

action level modeling techniques for wireless sensor network
simulation,” in Proceedings of DATE, 2010, pp. 1047–1052.

[13] F. Fummi, G. Perbellini, D. Quaglia, and A. Acquaviva,
“Flexible energy-aware simulation of heterogenous wireless
sensor networks,” in Proceedings of DATE, 2009, pp. 1638–
1643.

[14] A. Roscoe and G. Ault, “Supporting high penetrations of re-
newable generation via implementation of real-time electric-
ity pricing and demand response,” Renewable Power Gener-
ation, IET, vol. 4, no. 4, pp. 369–382, July.

[15] R. Teng and T. Yamazaki, “Bit-watt home system with hybrid
power supply,” in Proceedings of ICCAE, 2010, pp. 59–63.

[16] N. Gudi, L. Wang, V. Devabhaktuni, and S. Depuru, “De-
mand response simulation implementing heuristic optimiza-
tion for home energy management,” in Proceedings of NAPS,
2010, pp. 1–6.

[17] P. Vytelingum, T. D. Voice, S. D. Ramchurn, A. Rogers, and
N. R. Jennings, “Agent-based micro-storage management for
the smart grid,” in Proceedings of AAMAS, 2010, pp. 39–46.

[18] Synopsys, Inc., “http://www.synopsys.com.”

36


