
TOWARDS A DYNAMIC EVOLUTIONARY APPROACH
TO FPGA TEMPERATURE MANAGEMENT

Peter R. Lewis, Walter C. Chibamu and Xin Yao

CERCIA, School of Computer Science
University of Birmingham, UK

{p.r.lewis – wcc081 – x.yao}@cs.bham.ac.uk

ABSTRACT
Reconfigurable computing systems, such as FPGAs, provide
great promise for on-the-fly adaptive computation. Such
systems can be modified while in use, to deal with newly
arriving computational tasks. However, how to adapt, and
with respect to what objectives, is not yet well established.
Typically, one might be interested to achieve an allocation
of tasks, as they arrive, to differently sized regions of the
FPGA, in order to provide the most efficient computation.
At the same time, it is important to also maintain healthy
on-chip temperature. In this paper, we propose a novel de-
scription of this dynamic FPGA temperature management
problem. We formulate the problem as a dynamic multi-
objective optimisation problem, with three objectives and a
time-linkage characteristic. We discuss the implications of
the availability or otherwise of a model of the FPGA, and
propose the use of evolutionary algorithms as a method to
tackle the problem.

1. INTRODUCTION
A current trend in field-programmable gate array (FPGA)
technology is an increase in the number and density of pro-
grammable logic components. However, increased density
results in both higher and uneven chip temperature distri-
butions (hot spots), the management of which is becoming
increasingly important [1]. One factor that influences tem-
perature is the distribution of tasks across the chip. This
calls for efficient, temperature-aware methods, able to map
incoming tasks and migrate existing tasks to cooler regions,
such that the overall temperature is kept as low as possible
and hot spots are avoided. However, migrating tasks which
are already executing incurs an overhead in terms of exe-
cution time that should also be avoided. In this paper, we
formalise the thermal management of FPGAs as a dynamic
multi-objective optimisation problem. The task is to find a

This research was conducted in the EPiCS project and received fund-
ing from the European Union Seventh Framework Programme under grant
agreement no 257906. http://www.epics-project.eu/ The au-
thors would like to thank Markus Happe, Andreas Agne, Christian Plessl
and Marco Platzner for their contribution to fruitful discussions.

mapping of tasks to computational cores at a series of de-
cision points, with the aim of achieving an efficient trade-
off between conflicting objectives. Though in this paper
we focus on FPGAs, the problem definition and proposed
solution generalise beyond current technology, and we ex-
pect will apply equally to future massively parallel recon-
figurable computing platforms, where dynamic temperature
management will have an even bigger role to play.

2. BACKGROUND AND RELATED WORK
Modern FPGAs allow partial reconfiguration, where only a
part of the FPGA is reconfigured (for example, a new piece
of functionality is placed onto a currently idle region of the
chip) while the rest of the FPGA remains active and con-
tinues to operate [2]. To enable granular chip temperature
sensing, the FPGA may be partitioned into a regular grid of
tiles [3]. A sensor is placed on each tile, which records the
tile’s temperature periodically. Processing elements (called
cores in this paper) are laid over at least one tile. Figure 1 il-
lustrates this idea whereby a 10×15 tile FPGA is configured
into eight cores, occupying varying sized regions.

CoresTiles

Fig. 1: Illustration of a multi-core FPGA with different sized
cores and temperature sensing tiles. Example tiles and cores
are indicated.

A number of dynamic thermal management techniques have
been developed, which aim to control a chip’s temperature
[4, 5] at runtime. Our main contribution is to formulate the

problem formally, as a dynamic multi-objective optimisa-
tion problem. A clear formalisation of the FPGA temper-
ature management problem helps us to gain a deeper un-
derstanding of the problem and various hidden factors and
assumptions that are associated with it. It helps us to focus
on the most important challenges and thus to propose most
appropriate solutions.

Evolutionary computation (EC) has a long and successful
history of application to complex optimisation problems [6].
The main idea of evolutionary algorithms, of which there are
now many variants, is to maintain a population of candidate
solutions to a problem (called individuals), which are eval-
uated against an objective function (called a fitness function
in the parlance of EC), which defines the problem to be opti-
mised. Based on the fitness of candidate solutions, they are
selected (analogously to natural selection in biological evo-
lution), before undergoing a perturbation (called mutation in
EC), and optionally some recombination between individu-
als in the population. This results in a further generation
of candidate solutions, which are then evaluated against the
fitness function. The process iterates, typically until a time
budget is exhausted, or a suitably optimal solution is found.

Relatively recently, EC has also begun to be applied to dy-
namic optimisation problems [7]. These are problems where
there are multiple decision points, each at which a solution
is implemented. Crucially, between these multiple decision
points, the problem may have changed. In the case where
the changes are incremental, i.e. the objective function at
time t, ft has some similarity to that at a previous time, e.g.
ft−1, then the incremental exploratory nature of evolution-
ary algorithms lends them well to the adaptation of solutions
between decision points, since it acts to transfer knowledge
from past problem instances to the current one. A more for-
mal definition of a dynamic optimisation problem is given
in [8]. A more comprehensive treatment of the topic is pro-
vided by a recently edited volume [9].

Several performance measures have been developed for evo-
lutionary dynamic optimisation [7, 8]. Depending on the as-
sumptions present in the real world problem, different per-
formance measures may be more appropriate. Firstly, the
online performance metric [7] is defined as the sum or aver-
age of all fitness evaluations over the entire problem:

Fonline =
∑
t∈T ′

ft(x) (2.1)

where T ′ is the set of all time points at which fitness may be
evaluated, ft is the fitness function at time t ∈ T ′ and x is a
candidate solution to be evaluated.

The online measure is appropriate in the case when there
exists no simulation or mathematical model of the prob-

lem, and therefore each and every evaluation must be carried
out in the real world. In this case, every fitness evaluation
counts. This has significant implications for the exploratory
behaviour of the algorithm, since any bad individuals gener-
ated through exploration of new regions of the search space,
impact directly upon overall performance.

In the case when either a model of the problem may be as-
sumed, or else when the algorithm may obtain the use of
the real-world problem instance during a training phase that
does not impact upon problem performance, we may em-
ploy an offline performance measure. An original offline
performance metric was defined by Branke [7], which takes
the average of the best individual found so far, at each time
step. As Branke points out however, this does not account
for the case when an individual from a previous time has a
reduced fitness at later time points. Several variants of of-
fline performance have since been defined in the literature,
though they are typically tied either to generations (as in the
best of generation measure) or else to detected changes (as
in the modified offline measure) [8].

In the FPGA temperature management problem as described
in this paper, it appears more intuitive to tie a possible offline
performance evaluation to discrete decision points, which
correspond to opportunities to reconfigure the FPGA. In this
case, we define offline decision-based performance to be:

Foffline =
∑
t∈T

ft(x) (2.2)

where T ⊂ T ′ is the set of time points at which a decision
is made and a solution implemented in the FPGA, a subset
of the full set of time points at which the evolutionary algo-
rithm performs fitness evaluations (on the model). Note that
a decision may involve making no change to the FPGA rel-
ative to the previous decision, which may be desirable in the
case when no better solution has been found in the interim.

In addition to being a dynamic optimisation problem, the
FPGA temperature management problem is inherently multi-
objective, since we are concerned both with computational
performance of the chip as well as managing the chip’s tem-
perature. Multi-objective optimisation problems are a class
of optimisation problems in which our aim is to simultane-
ously optimise two or more objectives [10]. Since the objec-
tives are often in conflict, we cannot typically find solutions
which obtain the global optimum for all objectives simulta-
neously. Instead, we aim to find Pareto-optimal solutions,
i.e. those which cannot be further improved on one objec-
tive, without being strictly worse on at least one other ob-
jective. A preference model is then used to rank the found
Pareto-optimal solutions, and to select one for implementa-
tion. Evolutionary computation has also long been success-
fully applied to multi-objective optimisation problems [11].

Evolutionary algorithms have been used to solve several op-
timisation problems arising in FPGA configuration (e.g. [12,
13]). However, prior work has not considered run time re-
configuration as a dynamic optimisation problem, where mul-
tiple decisions are made during run time, as the problem
changes with unforseen incoming tasks and the effect of past
decisions. Instead, these problems consider the entire con-
figuration over time as a static optimisation problem to be
solved ahead of time.

The problem of determining task placement online in par-
tially reconfigurable FPGAs has also been tackled using evo-
lutionary algorithms [14]. However, this early work did
not consider the problem over time, as a dynamic optimi-
sation problem. Instead, evolutionary algorithms were used
to solve multiple independent task rearrangement problems
during run time. This assumption of independence ignores
the relationship between decisions, and cannot account for
time linkage. Additionally, the work did not consider tem-
perature, and though multiple performance-relevant metrics
were used, a multi-objective approach was not taken. The
metrics were instead combined into a single scalar objective
to be optimised. Crucially however, Middendorf et al. [14],
showed the effectiveness of using evolutionary computation
for online management of partially reconfigurable FPGAs.
In this paper, we present the first formulation of the problem
as a dynamic multi-objective optimisation problem, which
allows for run time optimisation, considering trade offs be-
tween conflicting objectives as well as time linkage. Our
formulation is also the first to consider temperature as an
additional explicit objective in such an optimisation prob-
lem, using real time readings. This is considered alongside
task performance objectives, in a multi-objective setting.

3. PROBLEM FORMULATION
In the dynamic FPGA temperature management problem,
we seek to schedule incoming tasks and migrate tasks cur-
rently in execution, during run time, in order to:

1. Minimise average chip temperature,

2. Minimise spatial temperature variations (hot spots),

3. Minimise the total time taken to execute all tasks.

We consider temperature measurement at the granularity of
a tile, a small surface area over which a physical sensor
records the temperature. A core is a processing element on
which computation can be carried out. These are depicted in
Figure 1. The configuration in which tasks are assigned to
cores has an impact on the resultant chip temperature land-
scape over time. In addition, cores may be heterogeneous,
such that, depending on which core it is executed, a task
may take a different amount of time to complete, and may
generate a thermal contribution with a different distribution.

3.1. Notation
Our problem definition makes use of the following notation:

• A finite set of discrete time intervals over which the
FPGA is to be managed, T = {0, 1, 2, 3, . . . tmax},
s.t. T ⊂ N0 and tmax = |T |+ 1.

• A single task in the set of tasks which, at time t, have
arrived but have not yet been completed, τ ∈ Tt.

• The arrival time of a task, α :
⋃
t∈T Tt → T .

• The completion time of a task, φ :
⋃
t∈T Tt → T .

• A fixed set of processing cores,C =
{
c0, . . . , c|C|−1

}
,

able to process incoming tasks.

• A notional waiting core, w, to which a task may be
assigned to indicate that it is in a waiting state (i.e.
the task is not currently being executed).

• A notional unusable core, u, to which a grid tile may
be mapped to indicate that it measures an unused area
of the FPGA.

• A set of grid tiles, G = {g0,0, g0,1 . . . , gx,y}, used for
temperature sensing; x and y denote the number of
horizontal and vertical tiles, respectively.

• A mapping of grid tiles to cores, σ : G → C ∪ {n},
indicating the layout of the FPGA. σ is required to be
surjective.

• A mapping of tasks to cores at time t, µt : Tt →
C ∪ {w}. µt is required to be injective, except that
many tasks may be mapped to the waiting core, w.

• A reading of each tile’s temperature at time t, θt :
G→ R, s.t. t ∈ T .

• The ambient chip temperature, Θambient.

• The total workload of a task, in (arbitrary) workload
units, ω :

⋃
t∈T Tt → N

• The current progress of a task, more precisely a counter
indicating the next workload unit of a task to be exe-
cuted, λ :

⋃
t∈T Tt → N.

• The task-core workload rate, ρ : ∪t∈TTt×C∪{w} →
N (i.e. how much of a task’s workload is completed
per time interval by a given core). ρ(τ, w) is defined
to be 0 for any τ .

• The task-core reconfiguration penalty, π : ∪t∈TTt ×
C ∪ {w} → N (i.e. the time taken, in workload units,
to reconfigure a given core to execute a given task).
E.g. π(τ, c1) indicates the workload not carried out
during a time instance, when migrating task τ to core
c1. It is assumed that π(τ, c) ≤ ρ(τ, c) for all τ and c,

i.e. that all migrations may be completed within one
discrete time step.

• The task-tile thermal contribution, δ : ∪t∈TTt ×G×
N×C×Σ→ R (i.e. how much temperature contribu-
tion a task makes to a tile, for a given workload unit
of that task, when running on a given core). Σ rep-
resents the space of possible grid-tile mappings, i.e.
possible instances of σ. δ(τ, g, x, c, σ) is undefined if
x > ω(τ), for all τ and any g, c and σ.
Typically, the thermal contribution of a task τ to tile g
occupied by core c running task τ (i.e. σ(g) = c and
if µ(τ) = c) during one time step will be∑λ(τ)+ρ(τ,c)
x=λ(τ) δ(τ, g, x, c, σ), except when τ is migrated

to c in that time step, in which case the thermal con-
tribution will be

∑λ(τ)+ρ(τ,c)
x=λ(τ)+π(τ,c) δ(τ, g, x, c, σ).

If the core does not occupy the given grid tile, i.e.
σ(g) 6= c then δ(τ, g, x, c, σ) = 0 for any τ and x.
In this case, any heat on tile g due to task τ will be
through dissipation through the chip, and not due to a
direct contribution.

3.2. Assumptions
We make the following simplifying assumptions:

• Workload rates ρ do not vary with temperature.

• For a given task and core, the task-core workload is
constant throughout the lifetime of the task.

• Cores which complete a task during one time interval
generate a thermal contribution as if they had executed
that task for the entire time interval.

• Reconfiguration itself does not generate any heat.

• There are no data dependencies between tasks.

Additionally, we assume that since tasks arrive over time, no
information about them is available until they have arrived.
Therefore, one cannot reason about Tt+n, where n ≥ 1, at
time t, since those tasks have not yet been seen.

3.3. Problem Framework
A problem instance begins with initial temperatures, θt(g) =
Θambient for all g ∈ G. The problem instance iterates:

1. Initialisation:

(a) t = 0.

(b) Arrival of first tasks:
Tt = {τ : τ ∈

⋃
s∈T Ts, α(τ) = 0},

the set of tasks arriving at time 0.

(c) Since no task is running when it arrives,
µt(τ) = w, for all τ ∈ Tt.

(d) Set counters to the start of each arriving task: for
all τ ∈ Tt, λ(τ) = 1.

2. t = t+ 1.

3. Measure temperature on each tile:
Record values for θt(g), for all g ∈ G.

4. Decide on mapping µt(τ) for each τ ∈ Tt.

5. Reconfigure FPGA according to µt, if necessary.

6. Carry out computational work:
For each τ ∈ Tt,

λ(τ) =

{
λ(τ)− ρ(τ, µ(τ)), if µt(τ) = µt−1(τ)

λ(τ)− ρ(τ, µ(τ)) + π(τ, µ(τ)), otherwise.

During this step, the thermal contributions are made
and heat dissipates.

7. Build Tt+1:

(a) Remove completed tasks:
Tt+1 = Tt \ {τ : τ ∈ Tt, λ(τ) > ω(τ)}

(b) Record completion times of completed tasks:
φ(τc) = t,
for all τc ∈ {τ : τ ∈ Tt, λ(τ) > ω(τ)}

(c) Arrival of new tasks:
Tt+1 = Tt+1∪{τ : τ ∈ ∪s∈TTs, α(τ) = t+1}.

(d) Set initial task state for new tasks:
For all τ ∈ Tt+1, if α(τ) = t+ 1:

i. µt(τ) = w, and

ii. λ(τ) = 1.

8. If t < tmax, go to step 2, otherwise end.

3.4. Instantaneous Optimisation Task
In the above problem framework, the task is to make the
decision at each point 4, to decide the mapping from tasks
to cores. This is encapsulated at each time point t, in the
mapping µt, which an optimisation algorithm is free to set.
Informally, we described the objectives which we would like
to make this decision with respect to, at the start of section 3.
We now formalise these objectives for a given time point, t:

1. Minimise average chip temperature, specifically:

minimise f1t(µt) =
1

|G|
∑
g∈G

θt(g) (3.1)

2. Minimise spatial temperature variations (hot spots).
There are various ways in which this could be tack-
led. Here we take a minimax approach:

minimise f2t(µt) = max (|θt(g)− θt(h)|) (3.2)

∀g ∈ G,∀h ∈ ν(g)

where ν(g) is the set of all tiles in the Moore neigh-
bourhood of g.

3. Minimise the total time taken to execute all tasks. At
a particular time instance, this may be seen as max-
imising the workload carried out at this time, for all
currently existing tasks:

maximise f3t(µt) =

∑
τ∈Tt

ρ(τ, µ(τ))−

{
π(τ, µ(τ)) if µt(τ) 6= µt−1(τ)

0 otherwise.
(3.3)

The performance of a given mapping µt, with respect to the
instantaneous optimisation objectives, f1t, f2t and f3t is cal-
culated based on temperature readings θt, the workload and
penalty rates ρ and π, and an observation of required recon-
figurations (mappings and migrations), due to a difference
between µt−1 and µt. In a naive way, we may now tackle
the problem of selecting a µt for step 4, evaluating candi-
dates for µt against the three objectives.

3.5. Objectives Over Time
Although decisions are made at each of the time points in
T , from the problem perspective, we are interested in the
objectives over the entire lifetime of the management of the
FPGA, i.e. over all of T . Therefore, when evaluating the
performance of a particular algorithm for determining task
to core mappings, we must define metrics which quantify
these over time. In section 3.4 we defined objectives for
a naive decision at time t. There are many ways in which
we could define complementary performance metrics for an
entire problem instance, e.g. by borrowing some ideas from
robust optimisation over time [15, 16, 17].

Here, we propose three performance metrics over time:

1. Minimise average chip temperature over time:

minimise f1 =
1

T

∑
t∈T

f1t(µt) (3.4)

2. Minimise spatial temperature variations over time:

minimise f2 =
1

T

∑
t∈T

f2t(µt) (3.5)

3. Minimise the total time taken to execute all tasks. Since,
assuming all tasks completed, a simple summation of
f3t would not capture penalties (i.e. time wasted per-
forming migrations), and a simple count of migrations

would ignore differences in ρ(τ, c) as c varies, we in-
stead measure finish times of tasks:

minimise f3 =
∑

τ∈
⋃

t∈T Tt

φ(τ) (3.6)

It is important to note, that while decisions are made locally
within each time step, the performance of any algorithm
generating such decisions should be evaluated in terms of
these three objectives calculated over all of T . Importantly,
whether these objectives are measured online or offline will
depend on the availability of a simulation or mathematical
model of the problem at each decision point, with sufficient
fidelity to provide meaningful fitness evaluations between
decision points. Since f1 and f2 depend on θt values, which
must either be measurements from the real system at time t
or predictions from a model, then the lack of a model means
that each and every fitness evaluation must be carried out on
the real system. Furthermore, in a possible extended version
of this problem, ρ may not be known, or may vary, and may
indeed also need to be a runtime observation.

3.6. Time linkage

Though f3t considers µt−1 explicitly, f1t, f2t and f3t are
driven by various µs where s < t. This is since the cur-
rent state of the FPGA at time t will be dependent on work
carried out prior to time t. Specifically, both the current tem-
perature of the grid tiles and the currently running tasks on
each core, can alter the values for each of f1t, f2t and f3t
for a given input. In the language of evolutionary dynamic
optimisation, this is referred to as time linkage [18].

The implication of this is important, since the quality of de-
cisions made at time t is affected directly by decisions made
prior to t. In some cases, this means that a seemingly good
decision at one point in time, acts to limit the quality of a de-
cision at a later point in time. For example, greedily placing
an incoming task onto the core which will complete that task
the quickest, may mean that a later task, which would ben-
efit more from being placed on that core, cannot be placed
there without incurring a penalty incurred by migrating the
first task away first. Thus, greedily optimising the instanta-
neous objective functions, f1t, f2t and f3t, is very likely not
to be optimal in terms of the objectives specified in f1, f2
and f3. An high performing optimisation algorithm should
therefore be designed to account for this time-linkage, in the
presence of uncertainty over future incoming tasks.

4. CONCLUSIONS AND OUTLOOK
In this paper we have defined a novel formulation for the
problem of dynamically managing partially reconfigurable

FPGAs, with respect to completion time of incoming tasks
and the management of on-chip temperature. The problem is
formulated as a dynamic multi-objective optimisation prob-
lem, which enables us to explore the trade-off between com-
putational efficiency, heat generation and temperature im-
balance. Although three objectives were proposed in this
paper, our formulation can easily accommodate additional
objectives, e.g., energy consumption of the chip, security,
reliability, etc. All these are important issues, which can
now be considered under the same problem formulation.

In tackling this problem, we propose the use of evolution-
ary algorithms, since these have been used successfully for
both dynamic and multi-objective problems for many years.
Their incremental exploratory nature enables them to re-use
information from previous time instances, for solutions in
the present, when the problem consists of a sequence of re-
lated problem instances over time. The performance of such
algorithms should be compared with that of existing heuris-
tics, such as those described by Happe [5, pp.73–81].

We highlighted a number of challenges which need to be ad-
dressed in order to tackle this problem. Firstly, the issue of
time linkage means that optimisation algorithms which are
greedy with respect to time, will likely not be optimal over
the entire problem instance. Instead, algorithms will need
to make predictions about future tasks and chip behaviour.
Secondly, techniques from both dynamic and multi-objective
optimisation will need to be combined in this problem which
contains both characteristics. Thirdly, a question arises on
the availability of a suitable simulation or mathematical model,
which would enable an evolutionary algorithm to evaluate
candidate solutions between decision points. Ultimately, the
availability (or otherwise) of such a model will drive the se-
lection of appropriate evolutionary techniques.

Finally, it will be important to evaluate the overhead of the
computational work required to apply evolutionary techniques
to tackle this problem at runtime, in terms of the objectives
considered here. Depending on the exact form the evolu-
tionary algorithm takes (importantly, e.g. either online or
offline), this overhead may actually make things worse. In-
deed, regardless of the approach taken, the costs as well as
benefits of a given technique should be considered. One ap-
proach could be for the decision process to be seen as a task
itself, whose impact is evaluated as part of the whole system.

5. REFERENCES

[1] S. Borkar, “Thousand core chips: a technology perspective,”
in Proc. 44th Annual Design Automation Conference, ser.
DAC ’07. New York, NY, USA: ACM, 2007, pp. 746–749.

[2] A. Gupte and P. Jones, “Hotspot mitigation using dynamic
partial reconfiguration for improved performance,” in Recon-
figurable Computing and FPGAs, 2009. ReConFig ’09. In-
ternational Conference on, 2009, pp. 89 –94.

[3] M. Happe, H. Hangmann, A. Agne, and C. Plessl, “Eight
ways to put your FPGA on fire – A systematic study of heat
generators,” in Proc. Int. Conf. on ReConFigurable Comput-
ing and FPGAs (ReConFig). IEEE Computer Society, 2012.

[4] D. Brooks and M. Martonosi, “Dynamic thermal manage-
ment for high-performance microprocessors,” in 7th Int.
Symp. on High-Performance Computer Architecture (HPCA),
2001, pp. 171–182.

[5] M. Happe, “Performance and thermal management on self-
adaptive hybrid multi-cores,” Ph.D. dissertation, Paderborn
University, 2013.

[6] R. Chiong, T. Weise, and Z. Michalewicz, Eds., Variants
of Evolutionary Algorithms for Real-World Applications.
Springer, 2012.

[7] J. Branke, Evolutionary Optimization in Dynamic Environ-
ments. Kluwer, 2001.

[8] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic
optimization: A survey of the state of the art,” Swarm and
Evolutionary Computation, vol. 6, pp. 1–24, 2012.

[9] S. Yang and X. Yao, Eds., Evolutionary Computation for Dy-
namic Optimization Problems. Springer, 2013.

[10] J. Branke, K. Deb, K. Miettinen, and R. Slowiski, Eds., Mul-
tiobjective Optimization: Interactive and Evolutionary Ap-
proaches. Springer, 2008.

[11] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Trans. on Evol. Comp., vol. 6, no. 2, pp. 182–197, 2002.

[12] J. Harkin, T. McGinnity, and L. Maguire, “Genetic algo-
rithm driven hardware-software partitioning for dynamically
reconfigurable embedded systems,” Microprocessors and Mi-
crosystems, vol. 25, no. 5, pp. 263–274, 2001.

[13] H. Fröhlich, A. Kosir, and B. Zajc, “Optimization of FPGA
configurations using parallel genetic algorithm,” Information
Sciences, vol. 133, no. 3–4, pp. 195–219.

[14] M. Middendorf, B. Scheuermann, H. Schmeck, and H. El-
Gindy, “An evolutionary approach to dynamic task schedul-
ing on FPGAs with restricted buffer,” Journal of Parallel and
Distributed Computing, vol. 62, no. 9, pp. 1407 – 1420, 2002.

[15] H. Fu, B. Sendhoff, K. Tang, and X. Yao, “Finding robust so-
lutions to dynamic optimization problems,” in Proc. EvoAp-
plications 2013, LNCS 7835, A. I. Esparcia-Alcázar et al.,
Eds. Springer-Verlag, 2013, pp. 616–625.

[16] ——, “Characterizing environmental changes in robust opti-
mization over time,” in Proc. 2012 IEEE Congress on Evo-
lutionary Computation (CEC’12). IEEE Press, 2012, pp.
551–558.

[17] X. Yu, Y. Jin, K. Tang, and X. Yao, “Robust optimization over
time – a new perspective on dynamic optimization problems,”
in Proc. 2010 IEEE Congress on Evolutionary Computation
(CEC2010). IEEE Press, 2010, pp. 3998–4003.

[18] T. T. Nguyen and X. Yao, “Dynamic time-linkage evolu-
tionary optimization: Definitions and potential solutions,”
in Metaheuristics for Dynamic Optimization, ser. Studies in
Computational Intelligence, E. Alba, A. Nakib, and P. Siarry,
Eds. Springer, 2013, vol. 433, pp. 371–395.

