
DYNAMICALLY SHIFTED SCRUBBING FOR FAST FPGA REPAIR

Leonardo P. Santos, Gabriel L. Nazar and Luigi Carro

Instituto de Informática

 Universidade Federal do Rio Grande do Sul (UFRGS)

 Porto Alegre, RS - Brazil

pereira.santos@ufrgs.br, {glnazar, carro}@inf.ufrgs.br

ABSTRACT

Field Programmable Gate Arrays (FPGAs) are very

successful platforms that rely on large configuration

memories to store the circuit functions required by users.

Faults affecting such memories are a major dependability

threat for these devices, and the applicability of FPGAs on

critical systems depends on efficient means to mitigate

their effects. The usual means to effectively remove such

faults, namely configuration scrubbing, consists in

rewriting the desired contents of the configuration

memory. The scrubbing process suffers from high power

consumption and a long mean time to repair (MTTR). In

this work we propose a novel approach to enable self-

diagnosed circuits that, by being aware of their own

disposition on the FPGA fabric are able to greatly reduce

the MTTR.

1. INTRODUCTION

SRAM-based FPGA play an important role in self-aware

systems by adding several attractive characteristics to logic

designers: flexibility, high density and high pin count.

However, these devices suffer reliability problems caused

by Single Event Upsets (SEUs). SEUs in SRAM-based

FPGAs are especially dangerous; because flipped bits in a

configuration cell might change the device’s programmed

functionality, creating a persistent error.

Redundancy techniques as Dual Module Redundancy

(DMR) and Triple Module Redundancy (TMR) can be

used to hide the effects of SEUs, thus enabling the use of

SRAM-based FPGAs in critical applications. The use of

redundancy comes at a price; as the respective area

overheads for DMR and TMR are 100 % and 200 % at

least, redundancy also adds to power consumption. As

redundancy works by detecting and/or masking the errors,

it is possible to accumulate enough SEUs to overwhelm it

and cause a failure.

Self-awareness is explored in this work through a

system that detects and repairs faults on itself before they

become functional failures. Currently, the standard way to

achieve this in a SRAM-based FPGA is to use partial

reconfiguration [1], [2], to re-write the configuration

memory before the chosen redundancy is overwhelmed.

This is called scrubbing and is usually accomplished by

periodically re-writing the device’s configuration memory

from start to end. The periodicity is calculated based on a

statistical estimate of the SEU rate per time unit on the

device’s operating environment. This means that a higher

than anticipated SEU rate can leave a circuit with a

configuration error. Also, scrubbing is not instantaneous,

as the configuration bit streams sizes for modern devices

are on the order of several megabits [3]; event the fastest

configuration interface can pose unacceptable delays. The

time required to fix an error with the scrubbing process is

called Mean Time To Repair (MTTR).

Due to FPGAs’ required flexibility, most configuration

bits do not have an effect on the circuit, even for

applications that use most of a device. This is due to most

of them being routing configuration bits or bits that control

unused resources. So SEUs on these idle configuration bits

have no practical effects. The work in [4] exploits this fact

to discover areas with high concentration of bits that affect

the implemented circuit and then to choose an optimum

frame start position for the scrubbing process, minimizing

the MTTR. In this work we extend this concept to improve

the gain in MTTR obtained with a fine-grained error

detection technique, which provides enhanced diagnosis.

Thus, the FPGA circuits are aware of their own placement

on the reconfigurable fabric and of the relation between

configuration bits and error detection signals. By not

having a single start position, but instead a dynamic one

based on fine-grained diagnosis, significant improvements

are attainable.

 The remainder of this paper is organized as follows:

in section 2 we discuss related works. Section 3 presents

the proposed technique. The validation and measurement

setup is explained in section 4, while section 5 contains the

results and their discussion. We close this paper with the

conclusions in section 6.

2. RELATED WORK

The opportunities provided from coupling error detection

techniques and partial reconfiguration have been explored

in the past a mean to provide high availability in SRAM-
This work is sponsored by the Conselho Nacional de

Desenvolvimento Científico e Tecnológico (CNPq)

based FPGAs. By using configuration readback and a per-

frame CRC [5], it is possible to have a high precision on

which frame should be corrected; but there’s still need for

a time-consuming readback and thus a high correction

latency. Other works like [6] rely on automatically

exploring the design space, using DMR and TMR to meet

reliability constrains while minimizing area and repair

time. This exploration tests different partitioning schemes

and granularities, with different trade-offs between

correction latency and area overhead.

 Fine-grained DMR is also used in [7], with a focus in

softcore processors. The authors propose using

precompiled bit streams to bypass faulty components,

while halting the processor to avoid corrupting its current

state and memory. As is discussed in [6], the extra

precision afforded by finer-grain techniques create a

greater area and power overhead. One way to mitigate

these overheads is offered in [8]. The use of hardwired

resources, in this case the carry chains of each slice, hides

some of the costs, as this chain is part of the device itself

and underused in many situations.

3. DYNAMICALLY SHIFTED SCRUBBING

Because in [8] there is approximately one error detection

bit for each of the device’s slices, we can create the

concept of an “error signature” that is formed by the

concatenation of all error bits. These error signatures

provide a more precise diagnosis information that thus can

be used to guide a local repair procedure, provided the

system is aware of its own signature-to-frame relations.

The concept explored in this work is that a scrubbing

procedure does not necessarily have to start at the first

frame of the partition, as proposed in [4]. That work makes

use of a previous error analysis to choose a single starting

position for the scrubbing process, thus requiring only a

very simple error detection scheme (primary output voters,

watchdog). In this work, we make use of error signatures

generated by a fine-grain error detection technique to

dynamically guide the choice of the optimum starting

frame, instead of relying on a statically chosen address. We

aim for the ideal situation of having a fine-grained

technique embedded on the final circuit and of using the

error signature to jump to the best frame possible, MTTR-

wise. Figure 1 shows the fine-grained error detectors

(represented by the “=?” boxes) and Signature Translators

(ST) embedded on a circuit.

To collect the error signatures, an error injection block

is used, as described in the next section. The injector

allows us to collect not only the signatures, but the frame

address associated with them and when a different bit is

tested within a frame. With this information, we can

construct a histogram for each signature, with the frame

number of the horizontal axis and the number of

occurrences of that particular signature on the vertical axis.

Figure 2 show the histograms for two different signatures

for the misex3 circuit.

It is possible to see in the histogram that one signature

happens over 50 times for the same frame, frame 617. So it

is fair to say that if that signature is detected, we could

achieve a good precision if we simply corrected this frame.

But it can also be seen that other frames generate the same

signature as well and that they are near each other. So we

can speculate that by starting the scrubbing by frame 617

we might achieve a low MTTR, but it might not be lowest

possible. Because the scrubbing would not start at the first

frame, we call this technique shifted scrubbing. To find the

best starting position, we calculate the MTTR for each

possible starting frame f:

Where MTTRs(f) is the MTTR for a given signature s

and starting frame f, FS is the frame’s configuration size in

bits, BR is the scrubbing bit rate, PB is the partition

beginning and PE is the partition end. hs[i] is histogram

value for s for the i-th frame and Os is the total amount of

occurrences of s. Therefore, hs[i]/Os is the probability that

the error is located in the i-th frame, whenever s is

received. dist(i, f) is the distance between f and the i-th

frame, i.e., the amount of frames that have to be written

before reaching the i-th. It is defined as:

Fig. 1. Embedded detectors and translators in a circuit

   (1) .1,
][

)(




PE

PBi s

s
s fidist

O

ih

BR

FS
fMTTR

Frame addr.

Error det.

FPGA

Non-

Volatile

Memory

Config. data

Config.

data

ST

ST
Config.

Ctrl

e

e

Frame

addr.

Frame

addr.

=?

=?

=?=?

=?

=?

=?

0

10

20

30

40

50

60

1
9

2
1

8
3

2
7
4

3
6
5

4
5
6

5
4
7

6
3
8

7
2
9

8
2
0

9
1
1

1
0
0

2
1

0
9

3
1

1
8

4
1

2
7

5
1

3
6

6
1

4
5

7
1

5
4

8
1

6
3

9

S
ig

n
at

u
re

 o
cc

u
rr

en
ce

s

Frame index

Fig. 2. Example of a histogram for misex3

The sum in (1) is, therefore, the “mean frames to

repair” when signature s is received and f is used as

starting frame. It is converted to a time unit with the time

required to write a frame (FS/BR). The scrubbing

controller would start on the best frame and reconfigure the

whole device. If during the scrubbing it reaches the end of

the partition, it would continue the scrubbing on the

partition’s beginning, until it reaches the last frame before

the starting frame. This can be seen in equation (2), the

first condition is the distance between f and i if f, the

starting frame, is before i. In this case, the error is

corrected before reaching the end of the partition. The

second condition occurs when the error is only corrected

after reaching the end of the partition and returning to its

beginning. In this case, PE – f + 1 is the amount of frames

written until the partition end and i – PB is the distance

between the partition beginning and i. One improvement

would be stopping the scrubbing process after the error

detection signals turn off, saving power and readying the

controller for a new scrubbing round faster.

It is possible to leverage on the FPGAs high density if

the error detectors and the blocks that translate the error

signature to the optimum frame address, indicated as ST in

Figure 1, are embedded on the device itself. This

arrangement gives designers a high density device with

self-error identification.

4. EXPERIMENTAL SETUP

In order to extract the error signatures, and thus identify

which bits are critical in a design, it was used an error

injection platform run on a Xilinx XUPV5-LX110T board,

containing a Xilinx Virtex 5 XC5VLX110T FPGA device.

This error injection platform relies on an error detection

scheme, in our case, the one presented in [8]. It uses LUT-

level DMR and the device’s embedded carry chain to

create an error detection bit for each of the device’s slices.

Bundling these all the error detection bits together, we

form the error signature for that bit.

With the error detection in place, the injector platform

exercises the Circuit Under Test (CUT) buy reading the

configuration memory of a single frame through the

Internal Configuration Access Port (ICAP); it then flips

one bit in the read configuration and writes back this

“errored” configuration on the device. The platform then

excites the CUT by creating several pseudo-random input

vectors by means of LSFR. While exciting the circuit, if

one or more bits on the error signature turn on, the

platform sends to a host PC the frame address being tested,

the error signature itself and a flag bit if that signature is

the first one for the bit being tested using a serial interface.

After all the bits in a frame’s configuration frame are

tested, that frame’s original configuration is written back

and the test of a new frame is begins. Because the

signatures are sensible both to the flipped bit and to the

input vector, it was chosen to limit the number of different

signatures for the same bit to 20.

To determine the signatures’ behavior for different

types of circuits, we selected a set of 20 benchmark circuits

from the MCNC suite; obtained at [9]. As the CUT and the

injection platform are placed on the same device, it was

necessary to limit the action of the injection platform on

just the CUT and not on itself by the use of placement

constrains to create an Area Under Test (AUT) in which

the CUT is placed completely and exclusively.

To analyze the data collected, we wrote a C++

application to map the different signatures and then

calculate for each signature the optimal beginning frame

for scrubbing process. The application also calculates the

MTTR for the standard scrubbing approach. An example

of the optimum starting position for two signatures is

shown in Figure 2 as the two black marks on the horizontal

axis. As the errors are sensitive to the routing and

placement choices of the synthesis tools, it is essential that

this information is kept in the final design. It is possible to

achieve this by the use of incremental design flow, among

other means such as placement and routing constraints.

(2)
otherwise. ,1

 if ,
),(










PBifPE

fifi
fidist

Table 1. Benchmark circuits

Circuit LUTs FFs PIs POs SSize

alu4 402 0 14 8 192

apex2 798 0 39 3 395

apex4 655 0 9 18 332

bigkey 575 224 264 197 354

clma 1269 34 384 82 609

des 550 0 256 245 355

diffeq 470 244 29 3 234

dsip 635 224 230 197 370

elliptic 143 71 20 2 73

ex1010 487 0 10 10 215

ex5p 128 0 8 63 81

frisc 1718 853 21 116 894

misex3 699 0 14 14 349

pdc 1253 0 16 40 603

s298 17 14 5 6 11

s38417 1709 1447 30 106 884

s38584.1 2001 1233 40 304 1080

seq 846 0 41 35 430

spla 221 0 16 46 114

tseng 598 260 53 122 337

Avg. 758.7 230.2 74.95 80.85 395.60

5. EXPERIMENTAL RESULTS

The list of the tested circuits from the MCNC suite is

shown in Table 1, along with the resources used (pre-

DMR), number of Primary Inputs (PI), number of POs and

the signature size (post DMR) in bits. The circuits were

tested according with the procedure described in section 4

and the error signatures were recorded and processed in a

host PC.

All results assume a scrubbing interface operating at

the maximum speed of the Virtex 5 SelectMAP interface,

which is a 32-bit wide port at 100 MHz. It is also taken

into account the time required to issue a write command to

the interface (25 cycles in our implementation) and to write

a dummy frame, which is required by SelectMAP. Such

costs represent only 0.39 % and 1.9% of the total MTTR

for standard and shifted scrubbing respectively. The

MTTR was measured, in µs, for a standard scrubbing

approach and for the shifted scrubbing. The obtained

results are presented in Figure 3, together with the

measured reduction in the MTTR. It can be seen that the

gains in MTTR reduction are significant, with a minimum

reduction of 77 % for the ex5p circuit and a maximum

reduction of 86 % for the des and pdc circuits. The mean

reduction for the 20 benchmark circuits was 80.85 %.

6. CONCLUSION

In this paper we have examined the possibility of reducing

time needed to repair the configuration of a SRAM-based

FPGA with a novel approach, using a shifted scrubbing

process. By using a fine-grain error detection scheme allied

with partial reconfiguration, it is possible analyze the

circuit and discover information that allows us to precisely

identify the frame with a configuration error and restore its

correct state. The technique was evaluated through

exhaustive testing with an error injection platform. The

obtained results show that is possible to expect MTTR

reductions of over 85 % for many of the benchmarked

circuits. These results are very encouraging to further

pursue optimizations of this technique.

Such a future work could see the detection and the

signature translator circuits allied with a TMR scrubbing

controller offering logic designers the advantages of

SRAM-based FPGAs with self-repair capabilities.

7. REFERENCES

[1] Altera, "Increasing Design Functionality with

Partial and Dynamic Reconfiguration in 28-nm

FPGAs ", ed.

[2] Xilinx. Partial Reconfiguration User

Guide Available:

http://www.xilinx.com/support/documentation/sw

_manuals/xilinx14_5/ug702.pdf

[3] Xilinx. 7 Series FPGAs Configuration User

Guide Available:

http://www.xilinx.com/support/documentation/us

er_guides/ug470_7Series_Config.pdf

[4] G. Nazar and L. Carro, "Accelerated fpga repair

through shifted scrubbing," in Field

Programmable Logic and Applications, 2013.

FPL 2013. International Conference on, 2013.

[5] M. Gokhale, P. Graham, E. Johnson, N. Rollins,

and M. Wirthlin, "Dynamic reconfiguration for

management of radiation-induced faults in

FPGAs," in Parallel and Distributed Processing

Symposium, 2004. Proceedings. 18th

International, 2004, p. 145.

[6] C. Bolchini, A. Miele, and C. Sandionigi, "A

Novel Design Methodology for Implementing

Reliability-Aware Systems on SRAM-Based

FPGAs," Computers, IEEE Transactions on, vol.

60, pp. 1744-1758, 2011.

[7] M. Psarakis and A. Apostolakis, "Fault tolerant

FPGA processor based on runtime reconfigurable

modules," in Test Symposium (ETS), 2012 17th

IEEE European, 2012, pp. 1-6.

[8] G. L. Nazar and L. Carro, "Exploiting Modified

Placement and Hardwired Resources to Provide

High Reliability in FPGAs," in Field-

Programmable Custom Computing Machines

(FCCM), 2012 IEEE 20th Annual International

Symposium on, 2012, pp. 149-152.

0%

20%

40%

60%

80%

100%

0
100
200
300
400
500
600
700
800 M

T
T

R
 R

ed
u

ctio
n

 M
T

T
R

 (
µ

s)

Standard Dynamically Shifted Scrubbing Reduction

Fig. 3. MTTR for the standard and shifted scrubbing approaches and relative reduction

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/ug702.pdf
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf

[9] K. Minkovich. Kirill Minkovich's Home Page.

Available: http://cadlab.cs.ucla.edu/~kirill/

http://cadlab.cs.ucla.edu/~kirill/

