
DECOMPOSING RUN-TIME RESOURCE MANAGEMENT IN
HETEROGENEOUS RECONFIGURABLE SYSTEMS

Stefan Wildermann, Jürgen Teich

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
{stefan.wildermann, teich}@fau.de

ABSTRACT
Mixed workload and multi-application scenarios charac-

terize modern and future reconfigurable systems. On the one
hand, such systems consist of applications with objectives
which may dynamically change during different execution
phases. On the other hand, the designer or user of the system
specifies requirements, e.g., regarding its power consump-
tion, which have to be filled at any time. The main challenge
is to partition the resources of the heterogeneous hardware
architecture between the applications such that their objec-
tives are optimized while fulfilling the system requirements.
In this context, dynamic application objectives and system
requirements can only be handled by providing self-adaptive
resource management at run-time.

This paper discusses a distributed approach to resource
management which is derived by applying Lagrangian dual
decomposition. Each application is only aware of its own
objectives and determines the desired amount of resources
solely based on local information. The proposed mechanism
steers the decisions of applications to be in compliance with
the objectives and requirements of the overall system. We
show that this approach achieves results which are compet-
itive, and in many cases even significantly better than the
results of a centralized heuristic used as state-of-the-art for
resource management in reconfigurable systems while hav-
ing the advantages of a distributed approach.

1. INTRODUCTION

Driven by the constant increase of the clock frequency, the
functionality and usage scenarios of embedded systems have
grown more and more complex and dynamic over the past
years. Since 2005 however, semiconductors are increasingly
confronted with physical issues concerning heat, power con-
sumption, and leakage problems so that the increase in clock
frequency of the computational resources has stagnated. Het-
erogeneous and highly parallel hardware architectures have
emerged as a consequence. Obtaining further performance
gains on these architectures requires that programs exploit
the available parallelism. At the same time, the architec-
tures have to provide reconfigurability so that the resources

can be shared optimally between applications for varying
workloads and other dynamic usage scenarios.

In this context, resource allocation is an optimization
problem with further objectives in addition to the perfor-
mance increase of individual applications. For instance, mo-
bile systems usually need an allocation of computational
resources with the requirement of the power consumption
staying within a power budget. This means that it is required
to select an implementation for each application such that
their objectives are optimized while fulfilling such system
requirements.

In this paper, we provide a mechanism for distributed re-
source allocation based on a round based negotiation scheme.
We derive this negotiation scheme from the formulation of
the original optimization problem by applying Lagrangian
dual decomposition. This results in a mechanism where
self-aware applications optimize their resource requirements
based on local information only, while a master steers their
decisions to be in compliance with the objectives and re-
quirements of the overall system. One interesting aspect of
this approach is the decoupling of master and applications
since they do not require any local information of each other.
This self-awareness and separation of concerns provides the
scalability and flexibility required for dynamic usage sce-
narios.

2. RELATED WORK

Resource allocation for dynamic embedded systems is of-
ten tackled by design-time methodologies in the form of
scenario-based design, e.g., [1], or multi-mode system syn-
thesis, e.g., [2], as it is possible to apply powerful verifi-
cation and optimization techniques to generate feasible and
highly optimized implementations. Nonetheless, near-future
embedded systems cannot be fully predicted at design-time
due to dynamic usage scenarios and unexpected unavailabil-
ity of hardware resources because of aging, reliability, or
temperature effects.

The only way for being able to deal with this is to pro-
vide the system with a run-time resource management (RRM)
layer which dispatches the reconfigurable resources to the



applications. Centralized RRMs collect all information rele-
vant for calculating an optimized resource allocation. How-
ever, they have to deal with scalability and reliability issues
as they form a single point of failure and produce commu-
nication and computation hot-spots and bottlenecks at the
processors running the RRM. Even security issues can arise
when an application has to reveal all internal information,
and thus introduce the possibility of side-channel attacks.
Consequently, several decentralized RRM approaches have
been proposed, which are often based on multi-agent sys-
tems in the embedded domain [3, 4]. Here, also mechanisms
from distributed computing (grid computing, cloud comput-
ing) could be adopted, which are mostly provided through
auctions. In this paper, we present a formal approach to es-
tablish a distributed resource allocation approach where we
apply techniques from convex optimization to incorporate
self-awareness into the RRM.

3. DECOMPOSITION OF THE RUN-TIME
RESOURCE MANAGEMENT

An implementation of an application i can be characterized
by a vector xi. It contains the implementation’s quality num-
bers regarding application and system objectives, as well as
the amount of all resource types required to run this imple-
mentation on the heterogeneous system. The set of all pos-
sible implementations is denoted by Di. This turns out to
be a Pareto front, only containing implementations which
are non-dominated regarding the objectives and resource re-
quirements. Figure 1 illustrates an example. There is of
course the question of how to determine Di, and we ob-
serve two major directions in the related work. The first one
is to determine the non-dominated implementations Di at
design-time by performing design space exploration (DSE)
and applying profiling techniques [5, 6]. The second one
is to perform adaptive auto-tuning which uses parametrized
code variants [7] for being able to generate various imple-
mentations at run-time. They can then be evaluated by mon-
itoring the values of the objectives during their execution.

An application has different utilities for running in one
of the implementations, which is expressed by utility func-
tion fi : Di → R. This utility may depend on the current
execution phases of the application. The purpose of the util-
ity function is to assign each implementation with a scalar
value, which defines a total order over all elements in Di.
This is necessary for being able to make decisions at run-
time. Such functions are commonly achieved by performing
a scalarization of all relevant application objectives, e.g.,
[5, 6].

3.1. Resource Allocation Problem

Resource allocation in heterogeneous reconfigurable systems
can be formulated as a combinatorial problem with the goal

0 2 4 6 8
0

5

10

(1×r1)

(1×r1, 1×r2)
D

non-dominated because re-
source requirements are not
comparable with those of B

(1×r3)
A

(2×r1, 1×r2)
B

(2×r1, 2×r2)
dominated by D

(1×r1, 3×r2)
C

speedup

po
w

er
co

ns
um

pt
io

n

Fig. 1. Example of implementations depicted as a Pareto
front for objectives speedup, power consumption, and usage
of three resource types (r1, r2, r3). Each point is annotated
with the amount of required resources of each type.

of selecting implementations of all applications which max-
imize their utilities while adhering to the system constraints.
Constraints originate from restricted physical and abstract
resources (e.g., available amount of computational resources
of a specific resource type or restricted power budgets). The
upper bound of a constraint j is specified by rj , and the
amount required by an implementation xi is given by rj(xi).

Whenever an application switches its execution phase or
the system environment changes, the system should be re-
configured to optimally utilize the available resources. This
problem can be formalized acc. to the following definition.

Definition 1. Resource allocation problem

maximize
n∑

i=1

fi(xi) (1)

subject to
n∑

i=1

rj(xi) ≤ rj , j = 1, ...,m (2)

Eq. (1) represents the objective to maximize the average util-
ity of all applications1, and Eq. (2) the m constraints.

3.2. Decomposing the Resource Allocation Problem

Generally, the optimization problem formulated in Def. 1 is
NP-hard. In this section, we therefore propose an approach
which is based on solving the Lagrangian dual optimization
problem. The main benefits are that this results in a convex
optimization problem, which can be solved much more ef-
ficiently than the primal problem, and that it can be decom-
posed to enable a distributed solution method. The mathe-
matical background applied in this section is, e.g., summa-
rized in [8].

The Lagrangian of the resource allocation problem is

L(x, λ) = −

(
n∑

i=1

fi(xi)

)
+

m∑
j=1

λj

(
n∑

i=1

rj(xi)− rj

)
(3)

1The constant normalizing factor 1/n can be omitted.



where λj is the Lagrangian multiplier associated with the
j-th constraint.

The Langange dual function is then defined as

g(λ) = inf
x
L(x, λ) =

=

n∑
i=1

inf
xi

−fi(xi) +

m∑
j=1

λj · rj(xi)

−
−

m∑
j=1

λj · rj . (4)

The interesting aspects of the dual function are twofold. First,
the optimal implementation xi for given multipliers λ =
(λ1, ..., λm) can be calculated by application i independent
of other applications. Second, g(λ) is concave and continu-

ous in λ even when the primal objective function
n∑

i=1

fi(xi)

is not.
Now, the Lagrange dual optimization problem is given

as

maximize g(λ)

subject to λ ≥ 0, (5)

which, due to the nature of g(λ), is a convex optimization
problem. As such, it is possible to apply standard methods
to determine the optimal value for λ. An algorithm based on
the subgradient method [8] is summarized in Algorithm 1.
All application subproblems can be solved independently,
and the master problem of maximizing the dual function is
solved by applying the subgradient method for all Lagrange
multipliers.

Algorithm 1: Algorithm for solving the dual opti-
mization problem.

1 while !stopping criterion do
// application subproblems

2 for each i = 1, ...n do
3 Find xi that minimizes(

−fi(xi) +
m∑
j=1

λj · fj(xi)

)
;

// master problem
4 for each j = 1, ...m do

// Calculate subgradient of λj
5 ∆j = rj −

∑n
i=1 rj(xi);

// Apply update rule acc. to
subgradient method

6 λj = max{0, λj − αt,j ·∆j} ;

The algorithm proposes a negotiation scheme, as illus-
trated in Figure 2. The Lagrange multipliers can be inter-
preted as the price of the respective resource (cf. [9]): The

master problem component
maximize the costs (g(λ))

...

sub-problem component
application 1

maximize the asset(
f1(x1)−

m∑
j=1

λj · rj(x1)
)

sub-problem component
application n

maximize(
fn(xn)−

m∑
j=1

λj · rj(xn)
)

x1 λ xn λ

Fig. 2. Schematic illustration of resource allocation based
on dual decomposition.

master tries to maximize the costs, while each application
determines how much resources it wants to buy to maximize
its asset for the current price. The big advantage is the self-
awareness inherent in the algorithm: For no component is it
necessary to have any internal details about another compo-
nent.

A disadvantage is that due to the Lagrangian relaxation
in Eq. (3) the optimum is only approximated. This induces
that there might be a gap between the optimal value f∗ of
the original problem and the optimal value g∗ of the dual
problem, so that (−f∗) − g∗ ≥ 0 could be non-zero. As
a consequence, the negotiated outcome may not be achiev-
able or feasible. We therefore propose the following heuris-
tic. Applications can claim resources, e.g., by using mecha-
nisms known from invasive computing [10], which enables
the exclusive reservation of resources. Whenever resource
conflicts arise during this embedding, applications are prior-
itized to resolve these conflicts. We choose the priority to be
proportional to

fi(xi)−
m∑
j=1

λj · rj(xi), (6)

which represents the negotiated asset of application i. Ap-
plications which do not find sufficient resources for their ne-
gotiated implementation xi choose this implementation x′i
that can be feasibly implemented on the remaining resources
with maximal asset acc. to Eq. (6).

4. EXPERIMENTS

In this section, we present the results of our approach. In one
version, the negotiation is performed for 20 rounds (rrm20)
and in the other version for 100 rounds (rrm100) before the
applications are embedded. We compare our approach to
the knapsack heuristic from [5] (knap). For the first experi-
ments, we generated test cases from the e3s benchmark [11].
It contains five applications. The architecture contains three
different resource types. For each application, we generated
the Pareto sets Di by performing a DSE using the Opt4J



Table 1. Results for e3s benchmark case study.

α approach speedup power[W] utility
∑
i

fi(xi)

0 knap [5] 3.21 8.25 -8.25
rrm20 5.00 8.80 -8.80
rrm100 5.00 8.80 -8.80

0.5 knap [5] 3.59 6.59 -1.50
rrm20 5.00 8.80 -1.90
rrm100 5.00 8.80 -1.90

0.75 knap [5] 24.14 40.07 8.09
rrm20 27.07 45.44 8.94
rrm100 26.85 45.08 8.86

1.0 knap [5] 27.92 57.67 27.92
rrm20 31.20 65.39 31.20
rrm100 31.48 63.66 31.48

5 15 25 35
0

200

400

600

rrm20

rrm100

knap [5]

#applications

ut
ili

tie
s

of
10

0
ex

pe
ri

m
en

ts
pe

rs
et

up
in

%
w

ith
re

sp
ec

tt
o

kn
ap

[5
]

Fig. 3. Boxplots of the results for synthetic test cases rela-
tive to the results of knap (indicated by dashed line) for 100
experiments per setup.

framework [12] and optimized for resource usage, speedup
(compared to the implementation with highest latency) and
power consumption. The utility function is chosen accord-
ing to fi(xi) = α·speedup(xi)−(1−α)·power(xi), where
α is a weight for scalarizing the two objectives to maximize
the speedup and to minimize the power consumption. Re-
sults for different values of α are shown in Table 1. In all
cases, the results are close together, showing that the pro-
posed distributed approach is competitive with a fully cen-
tralized heuristic.

We furthermore performed test runs on synthetic test
cases with 5, 15, 25, and 35 applications, and an architec-
ture consisting of four resource types. For each such setup,
we generated 100 cases and evaluated them. Fig. 3 shows
the boxplots of the results for each setup, where the results
of knap serve as baseline and all other results are given rel-
ative to this in percent. The results show that the number
of negotiation rounds has to increase with the number of
applications as rrm20 degradates with the number of appli-
cations. In case of rrm100 however, the proposed approach
even performs better in a significant amount of experiments.

5. CONCLUSION

This paper demonstrates the application of formal mecha-
nisms to incorporate self-awareness into run-time resource
management (RRM) for embedded reconfigurable systems.
We have presented the use of Lagrangian relaxation and dual
decomposition. But also other techniques, such as game
theory [13], are promising mathematical tools to perform
this task. We discussed several advantages of distributed
and self-aware approaches for RRM compared to central-
ized heuristics. Nonetheless, they usually perform better
than distributed approaches as all details are available. How-
ever, the experiments have shown that the proposed distri-
buted approach is competitive and in many cases even sig-
nificantly better than a state-of-the-art centralized heuristic.

6. REFERENCES

[1] P. van Stralen and A. Pimentel, “Scenario-based design space ex-
ploration of MPSoCs,” in Proceedings of ICCD, oct. 2010, pp. 305
–312.

[2] S. Wildermann, F. Reimann, D. Ziener, and J. Teich, “Symbolic de-
sign space exploration for multi-mode reconfigurable systems,” in
Proceedings of CODES+ISSS, 2011, pp. 129–138.

[3] M. Al Faruque et al., “ADAM: Run-time agent-based distributed
application mapping for on-chip communication,” in Proceedings of
Design Automation Conference (DAC), 2008, pp. 760–765.

[4] S. Kobbe et al., “DistRM: distributed resource management for on-
chip many-core systems,” in Proceedings of CODES+ISSS, 2011,
pp. 119–128.

[5] C. Ykman-Couvreur, V. Nollet, F. Catthoor, and H. Corporaal, “Fast
multi-dimension multi-choice knapsack heuristic for mp-soc run-
time management,” in Proc. of SOC, nov. 2006, pp. 1 –4.

[6] G. Marianik et al., “Using multi-objective design space exploration
to enable run-time resource management for reconfigurable archi-
tectures,” in Proc. of DATE, 2012, pp. 1379–1384.

[7] Y. Li, J. Dongarra, and S. Tomov, “A note on auto-tuning GEMM
for GPUs,” in Proc. of ICCS. Springer-Verlag, 2009, pp. 884–892.

[8] D. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE JSAC, vol. 24, no. 8, pp.
1439 –1451, aug. 2006.

[9] S. Boyd and L. Vandenberghe, Convex optimization. New York,
NY, USA: Cambridge University Press, 2004.

[10] J. Teich et al., “Invasive computing: An overview,” in Multiproces-
sor System-on-Chip – Hardware Design and Tool Integration, M.
Hübner and J. Becker, Eds. Springer, Berlin, Heidelberg, 2011, pp.
241–268.

[11] R. Dick, “Embedded system synthesis benchmarks suite,” 2010,
http://ziyang.eecs.umich.edu/dickrp/e3s/.

[12] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich, “Opt4J –
a modular framework for meta-heuristic optimization,” in Proc. of
GECCO, Dublin, Ireland, 2011, pp. 1723–1730.

[13] S. Wildermann, T. Ziermann, and J. Teich, “Game-theoretic analysis
of decentralized core allocation schemes on many-core systems,” in
Proceedings of DATE, 2013, pp. 1498–1503.


