
MULTI-OBJECTIVE SELF-OPTIMIZATION OF RECONFIGURABLE DESIGNS WITH
MACHINE LEARNING

Maciej Kurek, Tianchi Liu, Wayne Luk ∗

Department of Computing
Imperial College London

180 Queen’s Gate, London SW7 2BZ, England
email: mk306@imperial.ac.uk, tianchi.liu12@imperial.ac.uk, wl@imperial.ac.uk

ABSTRACT

Optimizing reconfigurable designs is a complex task
that usually involves manual design analysis and subsequent
tweaking. We present a new Multi-Objective Machine Learn-
ing Optimizer (MOMLO) which supports self-optimization
of reconfigurable designs through automatic analysis and
adaptation of design parameters. From a number of bench-
mark executions, our tool automatically derives the charac-
teristics of the parameter space and creates a surrogate model
covering the multiple objectives of the design. The resulting
Pareto fronts of possible design configurations can be used
for self-optimization at run time. For example, we can switch
between a fast but power hungry design and a relatively slow
but low power alternative. We evaluate the algorithm using a
multi-objective example consisting of power and throughput
benchmarks.

1. INTRODUCTION

In previous work [1, 2] we have demonstrated automatic
optimization for reconfigurable designs by constructing sur-
rogate models of fitness functions which represent the design
quality of parameterized designs. We now extend our work
to optimize for multiple competing design aspects such as
power efficiency, performance and accuracy. Our new Multi-
Objective Machine Learning Optimizer (MOMLO) aims to
discover a set of balanced solutions with respect to several
objectives and represent them in a Pareto optimal front. A
surrogate model of all the design objectives is constructed,
which brings substantial savings since its evaluation is orders
of magnitude faster than generation of bitstreams and code
execution of benchmarks. Our MOMLO approach results
in a substantially reduced design effort compared to tradi-
tional approaches which require the designer to manually
analyze the application, create models and benchmarks, and

∗This work is supported by the European Union Seventh Framework
Programme under grant agreement number 248976, 257906, 287804 and
318521, by UK EPSRC, by Maxeler University Programme, and by Xilinx.

subsequently optimize the design [3, 4, 5, 6]. Furthermore,
we support self-optimization at run time where an optimal
design variant can be reconfigured based on dynamically
changing operating conditions or environments by repeat-
edly extracting the most suitable design from the discovered
Pareto optimal front. The contributions of this paper are:

• The new MOMLO approach. We show how multiple
Bayesian regressors, classifiers and multi-objective
meta-heuristics can be interlinked (Section 3).

• An evaluation of the extended MOMLO approach
using a case study where a quadrature based finan-
cial application with varied precision is optimized for
throughput and power consumption (Section 4).

2. BACKGROUND

When developing reconfigurable applications, designers are
often confronted with a very large parameter space. As
a result parameter space exploration can take an immense
amount of time. A number of researchers approach the prob-
lem of high-cost fitness functions and large design spaces
in various fields by having fitness functions combined with
fast-to-compute Gaussian Process (GP) surrogate models
for decreasing evaluation time [7, 8, 9, 10, 11]. However
most current surrogate models only consist of a regressor
and rarely take into account invalid configurations within the
design space. Surrogate models, which approximate fitness
functions by substituting lengthy evaluations with estimations
based on closeness in a design space, have been investigated
in reconfigurable computing [12]. The work covers surro-
gate models for circuit synthesis from higher level languages,
rather than parameter optimization. In previous work [1, 2]
we have shown that it is useful to construct surrogate models
of fitness functions representing the design quality of recon-
figurable parameterized designs. The optimization approach
we developed replaces the following steps:

1. Build application and a benchmark returning design



quality metrics.

2. Specify search space boundaries and optimization goal.

3. Create analytical models for the design.

4. Create tools to explore the parameter space.

5. Use the tools to find optimal configurations, guided by
the models in step 3.

6. If result is not satisfactory, redesign.

When using the Machine Learning Optimizer (MLO) the
user supplies a benchmark along with constraints and goals,
and the MLO automatically carries out the optimization. The
approach consists of the following steps:

1. Build application and benchmark returning design
quality metrics.

2. Specify search space boundaries and optimization goal.

3. Automatically optimize design with MLO.

4. If result is not satisfactory, redesign or revise time
budget and search space.

2.1. Gaussian Process Regression

GP is a machine learning technology based on strict the-
oretical fundamentals and Bayesian theory [13]. GP does
not require a predefined structure; it can approximate arbi-
trary function landscapes including discontinuities, and in-
cludes a theoretical framework for obtaining optimum hyper-
parameters [10]. An advantage of GP is that it provides a
predictive distribution, not a point estimate.

A Gaussian process is a collection of random variables,
a finite set of which have a joint Gaussian distribution. A
Gaussian process is completely specified by its mean function
m(x) and the covariance (kernel) function k(x,x′). The goal
is to compute regression: f̂(x) ∼ GP(m(x), k(x,x′))

The function k(x,x′) describes the covariance between
pairs of random variables, and in regression analysis it ex-
presses the relation between input-output pairs. This is based
on a training setD of n observations,D = (xi, yi)|i = 1, ...n,
where x denotes an input vector, and y denotes a scalar out-
put. The column vector inputs for all n cases are aggregated
in theD×n design matrixX , and the outputs are collected in
the vector y. The goal of Bayesian forecasting is to compute
the distribution p(f̂ |x∗,y, X) of the function f̂ at unseen
input x∗ given a set of training points D. Using Bayes rule,
the predictive posterior for the Gaussian process f̂ and the
predicted scalar outputs f̂(x∗) = y∗ can be obtained.

2.2. Support Vector Machines Classification

Support Vector Machine (SVM) is a maximum margin clas-
sifier, which constructs a hyperplane used for classification
(or regression) [14]. SVMs use kernel functions k(x,x′)
to transform the original feature space to a different space
with a linear model used for classification. SVMs are a
class of decision machines and do not provide posterior
probabilities. There is a training set D of n observations,
D = (xi, ti)|i = 1, ...n, where x denotes an input vector, t
denotes a target value. The column vector inputs for all n
cases are aggregated in the D × n design matrix X , and the
targets in the vector t. The goal is to classify an unseen input
x∗ based on X and t by computing a decision boundary.

2.3. PSO

Particle Swarm Optimization (PSO) is a population-based
meta-heuristic based on the simulation of the social behavior
of birds within a flock [15]. The algorithm starts by randomly
initializing N particles where each individual is a point in
the X = R× ...×R search space. The population is updated
in an iterative manner, with each particle displaced based on
its velocity vid. The criteria for termination of the PSO algo-
rithm can vary, and usually are determined by a time budget.
The variable xid represents the dth coordinate of particle i
from the set X∗ of N particles, where each particle is a point
withinX . Multi-objective optimization is usually approached
by finding a Pareto optimal set of the underlying fitness func-
tions. The original PSO algorithm was designed to cope with
single-objective optimization problems, multiple different
flavors have been developed to cope with multi-objective op-
timization [16, 17]. Many more sophisticated multi-objective
meta-heuristic algorithms have been developed [18]. The de-
signer has to assess his requirements in terms of performance
and robustness when deciding which algorithm to use. In
such problems, the objectives to be optimized are normally in
conflict with respect to each other, which indicates that there
is no single solution for all of these problems. Instead, we
aim to find ”trade-off” solutions that achieve the best possible
compromise among the objectives. In other words, we wish
to find the Pareto optimal set P∗ which is an approximation
of the Pareto Front PF∗ [19].

3. OPTIMIZATION APPROACH

The optimization approach of MOMLO is inspired by that
of MLO. The idea of multi-objective surrogate modeling is
illustrated in Fig. 1. The MOMLO algorithm explores the
parameter space by evaluating different benchmark config-
urations as presented in Fig. 1a. Fig. 1b shows the results
obtained during evaluations are used to build surrogate model
which provides regressions of the fitness function multiple-
metrics and identifies invalid regions of the parameter space.



(a) (b) (c)

Fig. 1: Benchmark evaluations, surrogate model and model guided search for a problem with three conflicting objectives.

A multi-objective PSO guides the exploration of the param-
eter space using the surrogate model, as shown in Fig. 1c.
The main novelty is that the result of optimization is a Pareto
optimal set of designs P∗, allowing the design to self-adapt
when circumstances change.

3.1. Fitness Function

The parameter space X of a reconfigurable design is spanned
by discrete and continuous parameters determining both the
architecture and physical settings of Field programmable gate
array (FPGA) designs. Given a parameter setting x ∈ X , a
benchmark consists of a vector of fitness metric [y1, y2, .., yi] =
y and t, the exit code of the application. A function bi(x) =
yi represents one of the K objectives. Execution time and
power consumption are examples of possible objectives. Vec-
tor y consists of multiple fitness measures when the designer
wants to find an optimal design defined in terms of a number
of qualities. For example the y vector could constitute of
execution time and power usage, if the aim is to find the set of
power efficient designs. There are many possible exit codes
t, with 0 indicating valid x’s. The designer can choose to
extend the benchmark to return additional exit codes depend-
ing on the failure cause, such as configurations producing
inaccurate results or failing to build.

We distinguish three different types of exit codes. The
first type is exit code 0 indicating a valid design. The second
type of exit codes indicate configurations that produce results
yet fail at least one constraint making them undesirable. The
third type of exit codes are used for configurations that fail
to produce any results. The region of X that defines configu-
rations x that produce y and satisfy all constraints is defined
as valid region V , regions with designs failing at least one
constraint yet producing y are part of failed region F , and the
region with designs failing to produce y is the invalid region
I. If x∗ does not produce a valid result, we assign a value
that the designer assumes to be the most disadvantageous.
Depending on whether we face a minimization or a maxi-
mization problem for a given objective function fi either a

∞ or −∞ value will be assigned as presented in Eq. 1.

fi(x) =

{
yi x ∈ V
±∞ otherwise

(1)

3.2. The MOMLO Algorithm

We integrate a GP regressor f̂ and an SVM classifier to create
a novel surrogate model of fitness function f . As illustrated
in Fig. 1, the problem we face is regression of f over V and
F as well as classification of X . We make use of GP to ac-
cess the standard deviation estimate σ(x∗) of non-examined
parameter configurations x∗. We use SVMs to predict exit
codes of X∗ across X . Regression f̂i for a function fi is
created using the training set obtained from benchmark exe-
cution DRi, while classification is done using the training set
DC . We invoke regressions f̂i(x∗) for every particle in X∗
and for every function fi and aggregate the results to obtain
the regression [f̂1(x∗), f̂2(x∗), .., f̂n(x)] = f̂(x∗) = y∗ and
its uncertainty vector [σ1(x∗), σ2(x∗), .., σn(x)] = σ∗(x),
which is the standard deviation estimate. Exit code t∗ of
particle x∗ is predicted by the classifier.

In our MOMLO algorithm, we adopt 1) density mea-
sure [20] (indicates the closeness of the particles within the
swarm) as the criterion to choose the leader for particles, i.e.
guide the population to spread out along real Pareto frontier
as fast as possible; 2) ”ε-dominance” method [21] to retain a
non-dominated solution to the Pareto Front, which is believed
to be able to generate well-formed Pareto optimal set as well
as to generate the front evaluating fewer fitness functions.
We present the MOMLO approach in Algorithm 1. The al-
gorithm includes a classifier to account for invalid regions
of X . We initialize the meta-heuristic of our choice with
N particles X∗ randomly distributed across the parameter
space. Each particle has an associated fitness x.fit and a
position x. For all x∗ predicted to lie in V we proceed as
follows: whenever σmax(x∗), the largest value out of all σi,
returned by the GP is below a credible interval minσ we
use the prediction y∗; otherwise we assume the prediction to



Algorithm 1 MOMLO
1: for x∗ ∈ X∗ do
2: x∗.fit← f(x∗) . Initialize with a uniformly randomized set for

every objectives fi∗ in the fitness function.
3: end for
4: repeat
5: for x∗ ∈ X∗ do
6: if σmax(x∗) < minσ and t∗ = 0 then
7: x∗.fit← y∗
8: else
9: if t∗ = 0 then

10: x∗.fit← f(x∗)
11: else
12: for i ∈ 1, 2, ...,K do . Depending on the objective of

each of the fitness function either∞ or −∞ is assigned
13: x∗.fiti ← ±∞
14: end for
15: end if
16: end if
17: end for
18: X∗ ←Meta(X∗) . Iteration of the meta-heuristic
19: until Termination Criteria Satisfied

be inaccurate and evaluate f(x∗). This step is required and
happens in a situation when at least one of the underlying
fi functions is not modeled accurately. Although individual
fi(x∗) could be evaluated, usually the cost of evaluation of a
single fi is marginally smaller than the cost of evaluation of
f . Based on our experience values within the range of 0.01
and 0.1 are the most practical for minσ. Larger credible in-
terval will usually hinder MOMLO performance due to high
admissible uncertainty which is especially problematic when
the mean estimate is relatively small. The meta-heuristic will
avoid I and F regions as they are both assigned unfavorable
±∞ values. Whenever f(x) is evaluated, (x, t) is included
within the classifier training set DC . If the exit code is valid
(t = 0), then (x, yi) is added to DRi.

4. EVALUATION

In [4] the designer explores trade-off between accuracy and
throughput in a quadrature-based financial application with
three parameters. The first two parameters are mantissa
width mw of the floating point operators and the number of
computational cores cores. Having more mw bits increases
computation accuracy, but limits the maximum number of
cores that can be implemented on the chip due to the in-
creased size of the individual core. The third parameter is
the density factor df which is inversely proportional to the
integration grid spacing. It is an application parameter and is
independent of the FPGA device used. The density factor df
increases computation time per integration while improving
the accuracy of the results due to having a finer integration
grid.

The optimization goal is to find the design offering the
highest throughput of integrations per second φint (f1) and
the lowest power consumption W (f2) given a required min-

imum accuracy defined in terms of root mean square error
εrms. The error is defined with respect to results obtained by
calculating a set of reference integrals at the highest possible
precision. MOMLO terminates when the globally optimal
configuration for a given εrms is found. The F region con-
tains the inaccurate result class. The design space X is de-
fined asmw×cores×df : {11−53}×{1−16}×{4−32}.
We repeat the experiment for different error limits εrms 10
times; we find that in order for the approximate front to cover
the real Pareto front we require around 158 (εrms = 0.1),
116 (εrms = 0.05) and 91 (εrms = 0.01) fitness function
evaluations. By coverage we understand that around 30% of
designs within the approximate front will reside on the real
front and around 35% will match it within a 5% performance
limit. The approximate front includes more designs, and 50%
of the designs from the real front reside within it. The rest of
the designs have a higher discrepancy (around 10%) due to
surrogate model inaccuracies. The coverage can be improved
by increasing the number of fitness evaluations.

When comparing MOMLO to the single-objective MLO
[2] the increase of the number of required fitness function
evaluations to reach termination criteria is noticeable and
dependant on the size of valid area. The increase in fit-
ness function evaluations is 15% (0.1), 73% (0.05) and 94%
(0.01) for the evaluated error limits. Longer optimization
time of multi-objective problems is expected since the prob-
lems complexity increases with respect to single-objective
optimization. Although the overhead can be significant, it
seems to decrease as the size of valid area increases (in-
creased εrms). As presented in [2] the manual optimization
procedure requires 420 fitness function evaluations to find
an optimal design for a given εrms. In best case scenario
the number would not be increased for multiple objectives
meaning MOMLO would still offer superior performance.
The drawback of MOMLO is the lack of guaranty of finding
the true Pareto optimal front.

5. CONCLUSIONS AND FUTURE WORK

Our MOMLO approach can be used to create a self-adaptive
system which can constantly improve its knowledge of the
design’s Pareto optimal configuration set, and switch between
design configurations depending on the current environment.
The algorithm shows much promise, however its capability
and scope require further investigation. We are preparing a
number of new multi-objective evaluation cases which should
help us to assess MOMLO’s robustness and performance.
Furthermore we are investigating a distributed version of
the algorithm, enabling a parallel approach and hence faster
optimization when the compute resources are available. This
allows for an optimization approach where the algorithm self-
adapts the optimization strategy to balance its search speed
and efficiency.



(a) (b)

Fig. 2: The Real and Approximated Pareto Fronts for different εrms limits.

6. REFERENCES

[1] M. Kurek and W. Luk, “Parametric reconfigurable designs
with machine learning optimizer,” in FPT, 2012, pp. 109–112.

[2] M. Kurek, T. Becker, and W. Luk, “Parametric optimization
of reconfigurable designs using machine learning,” in Recon-
figurable Computing: Architectures, Tools and Applications,
ser. LNCS 7806. Springer, 2013, pp. 134–145.

[3] X. Niu et al., “Exploiting run-time reconfiguration in stencil
computation,” in FPL 2012, 2012, pp. 173–180.

[4] A. H. T. Tse et al., “Optimising performance of quadrature
methods with reduced precision,” in ARC, ser. LNCS 7199.
Springer, 2012, pp. 251–263.

[5] T. Becker, W. Luk, and P. Y. Cheung, “Parametric design for
reconfigurable software-defined radio,” in ARC. Springer,
2009, pp. 15–26.

[6] Q. Jin et al., “Optimising explicit finite difference option pric-
ing for dynamic constant reconfiguration,” in FPL, 2012, pp.
165–172.

[7] A. I. Forrester and D. R. Jones, “Global optimization of decep-
tive functions with sparse sampling,” in AIAA/ISSMO. Amer-
ican Institute of Aeronautics and Astronautics, September
2008.

[8] Y. Jin, M. Olhofer, and B. Sendhoff, “A framework for evo-
lutionary optimization with approximate fitness functions,”
IEEE Transactions on Evolutionary Computation, vol. 6, no. 5,
pp. 481–494, 2002.

[9] Y. S. Ong, P. B. Nair, and A. J. Keane, “Evolutionary opti-
mization of computationally expensive problems via surrogate
modeling,” AIAA, vol. 41, no. 4, pp. 689–696, 2003.

[10] S. Guoshao and J. Quan, “A cooperative optimization algo-
rithm based on gaussian process and particle swarm optimiza-
tion for optimizing expensive problems,” in CSO, vol. 2, 2009,
pp. 929–933.

[11] H.A.L. Thi, D.T. Pham, and N.V. Thoai, “Combination be-
tween global and local methods for solving an optimization
problem over the efficient set,” EJOR, vol. 142, no. 2, pp.
258–270, 2002.

[12] C. Pilato, A. Tumeo, G. Palermo, F. Ferrandi, P. L. Lanzi, and
D. Sciuto, “Improving evolutionary exploration to area-time
optimization of FPGA designs,” J. Syst. Archit., vol. 54, no. 11,
pp. 1046–1057, 2008.

[13] C. Rasmussen and C. Williams, Gaussian Processes for Ma-
chine Learning. MIT Press, 2006.

[14] C. M. Bishop, Pattern Recognition and Machine Learning.
Springer-Verlag, 2006.

[15] F. Van Den Bergh, “An analysis of particle swarm optimizers,”
Ph.D. dissertation, University of Pretoria, South Africa, 2002.

[16] X. Hu and R. Eberhart, “Multiobjective optimization using
dynamic neighborhood particle swarm optimization,” in IEEE
CEC, vol. 2, 2002, pp. 1677–1681.

[17] J. Liang, B. Qu, P. Suganthan, and B. Niu, “Dynamic multi-
swarm particle swarm optimization for multi-objective opti-
mization problems,” in IEEE CEC, 2012, pp. 1–8.

[18] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjec-
tive evolutionary algorithms: Empirical results,” Evol. Com-
put., vol. 8, no. 2, pp. 173–195, Jun. 2000.

[19] M. Reyes-Sierra and C. C. Coello, “Multi-objective particle
swarm optimizers: A survey of the state-of-the-art,” Interna-
tional Journal of Computational Intelligence Research, vol. 2,
pp. 287–308, 2006.

[20] K. Deb et al., “A Fast Elitist Multi-Objective Genetic Algo-
rithm: NSGA-II,” IEEE Transactions on Evolutionary Com-
putation, vol. 6, pp. 182–197, 2000.

[21] M. Laumanns et al., “Combining convergence and diversity
in evolutionary multiobjective optimization,” Evol. Comput.,
vol. 10, no. 3, pp. 263–282, Sep. 2002.


