
AUTONOMIC CONFIGURATION OF DYNAMIC PROTOCOL STACKS

Ariane Keller, Stephan Neuhaus, Markus Happe ∗

Communication Systems Group
ETH Zurich, Zurich, Switzerland

email: first.last@tik.ee.ethz.ch

Daniel Borkmann †

Red Hat
Zurich, Switzerland

email: borkmann@redhat.com

ABSTRACT

The Internet architecture works well for a wide variety of
communication scenarios. However, communication in con-
strained environments with embedded and/or mobile devices
requires specialized communication protocols. Addition-
ally, network characteristics often vary in those scenarios,
which makes it difficult for a static set of protocols to pro-
vide the required functionality. Therefore, we propose a
self-aware configuration method for dynamic protocol stacks
that allows for the autonomic configuration of individual
protocols into a protocol stack. This adaptation happens
at run-time and might be triggered by policy changes or
by changing network conditions. We demonstrate the effi-
ciency of our self-aware architecture for a networking sce-
nario where the link quality changes over time. In contrast
to a static reliable protocol stack we can reduce the com-
munication overhead in terms of sent packets by 28% for a
given scenario.

1. INTRODUCTION

In contrast to the beginning of the computing age, nowadays
most applications are distributed and interact with other de-
vices. Today’s applications are executed on a variety of de-
vices (such as workstations, notebooks, cellphones, sensor
nodes) with different processing power and in varying net-
work conditions (such as wireless or wired, trusted or un-
trusted, etc.). We can no longer assume that a static network-
ing architecture always provides robust and secure commu-
nication links with high throughput at low performance over-
head and power consumption.

For instance, mobile devices are usually used in dynamic
network environments, where the link quality can vary dra-
matically over time, e.g., when a user moves away from
or approaches a WLAN hotspot. Moreover, the user may
switch between private and public networks, which may re-
quire different privacy modes. Static networking architec-
∗The research leading to these results has received funding from the

European Union Seventh Framework Programme under grant agreement
no 257906.
†This work was performed while affiliated with ETH Zurich.

tures usually lack the flexibility to adapt themselves to dy-
namic environments in order provide the required commu-
nication functionalities at minimal cost.

In the current Internet architecture certain protocols can
already adapt themselves to changing communication con-
ditions. However, the overall functionality to be provided
by a communication link has to be specified while writ-
ing an application and can only be selected from a small
pre-defined range. We argue that in order to execute ap-
plications optimally in dynamic network environments, we
need a self-aware communication architecture, in which the
overall functionality autonomously adapts itself to the cur-
rent network characteristics. Examples of such an adapta-
tion could be the dynamic inclusion of a reliability and/or
a privacy block in the protocol stack whenever the network
conditions demand them.

In previous work [1, 2] we have already proposed to use
dynamic protocol stacks instead of static protocol stacks.
Dynamic protocol stacks (DPS) split the networking func-
tionalities into individual functional blocks, which can be
dynamically linked with each other in order to form arbi-
trary protocol stacks. In this paper we extend our work by
introducing a self-aware networking architecture that adapts
the protocol stacks at run-time to a changing environment.

Specifically, our contributions are:
• We have developed a self-aware network node archi-

tecture that supports the autonomic configuration of
dynamic protocol stacks.

• We have developed techniques to set up and adapt pro-
tocol stacks based on application requirements and the
current network condition.

• We have evaluated our self-aware architecture with
a real-world scenario and shown that self-adaptation
of the protocol stack can reduce the communication
overhead in terms of sent packets as compared to static
stacks.

The rest of this paper is structured as follows: We first
give an overview of related work (Section 2). Then, we
present our self-aware networking architecture and our self-
adaptation strategies in Section 3. Next, we demonstrate the
efficiency of our approach in a real-world networking sce-

nario with changing link qualities (Section 4). Finally, Sec-
tion 5 concludes the paper.

2. RELATED WORK

Already in the early 1990s, Tennenhouse and Wetherall pro-
posed Active Networks in which users could inject custom
code into the network [3]. This code was associated with
a set of packets that traversed the network from the source
over several routers to the destination. The code was exe-
cuted on intermediate nodes and could modify the packets
on-the-fly as desired. Less flexible architectures were pro-
posed by the Clickmodular router [4] and netgraph [5].
Both Click and netgraph offer the possibility to com-
bine networking functionalities flexibly. However, they did
not focus on run-time reconfiguration. The concepts of flex-
ibility, modularity, and extensibility were also recently pre-
sented by Ghodsi et al. [6] as the basic requirements for a
network architecture that is able to evolve. Wolf et al. [7] ar-
gue that a user should be able to choose the service that best
fits his requirements. In contrast to related work we present
a novel self-aware networking architecture which adapts its
protocol stack autonomously to react to a changing environ-
ment without fine-granular user interaction.

3. SELF-AWARE NETWORKING ARCHITECTURE

In this section we describe our self-aware networking ar-
chitecture that enables us to dynamically configure protocol
stacks. We first discuss the architecture developed for the
node-local adaptation and then we focus on the setup and
adaptation of the protocol stack between nodes.

3.1. Node-Local Adaptation

Figure 1 shows our self-aware network node architecture,
which consists of the following building blocks:

• The network models contain the network protocols,
the network characteristics, as well as some predic-
tions on how the world might look like in the future.

• The sensors provide information such as the signal-
to-noise ratio, available energy, or throughput. Sen-
sors can be passive (just observing) or active (insert-
ing probes in the network, observing the reaction).

• The sensor daemon collects data from the individ-
ual sensors. It offers additional functionality such as
sending notifications whenever a monitored value ex-
ceeds a specified threshold.

• The self-adaptation engine contains a strategy finder,
which selects the current strategy (minimize power,
maximize throughput, etc.), and a stack builder, which
determines the best stack and adapts the networking
core accordingly.

• The networking core is responsible for processing
network packets. Therefore, it passes a network packet
between functional blocks. The details of our net-
working core are described in [2].

self-adaptation engine

strategy
finder

stack
builder

user input:
goals

sensor daemon

SNR

energy

passive
sensors

throughput

latency

active
sensors

network
characteristics

reliability

throughput

prediction

seasonality

battery
lifetime

protocol
model

List of FBs

Pr
op

er
tie

s relibability
privacy

DTN
streaming

network models application

physical interface

FB

FB

FB

FB

networking core

Fig. 1. Overview of the self-aware node architecture.

Building a protocol stack requires the knowledge of (a)
the available protocols and (b) the communication require-
ments. In the Internet architecture, an application solves this
problem by using a specific BSD socket type and additional
libraries as needed, e.g., for encryption. This setup implies
that once the application is written it will always use the
same protocols and it cannot make use of newly developed
protocols that might fit its needs just as well or even better.
In our self-aware networking architecture, the application
can specify a set of properties that need to be fulfilled for a
given communication. The stack builder then examines the
protocol models and finds all protocol stacks that match the
requirements. In the current implementation, both protocols
and requirements, are specified with simple key words.

3.2. Inter-Node Adaptation

Once all possible stacks are known, a connection to the des-
tination node has to be established. The destination node
might not have the required protocols available; therefore,
before the communication starts, a protocol stack negotia-
tion phase is executed. First, all possible protocol stacks are
sent to the destination node. The destination node decides
which protocol stack to use, sets up this protocol stack and
sends the chosen configuration back to the source. If the
source never receives a reply from the destination, which
could happen on a lossy link, the source re-sends the con-

figuration message and waits for the confirmation. After the
completion of the negotiation phase, the actual data trans-
mission starts. In order to solve the “chicken and egg prob-
lem” of the protocol used for the protocol negotiation phase,
we assume that all nodes in a given network segment use the
Ethernet protocol. Similarly, if a connection to a node in an-
other segment should be established, the intermediate nodes
have to use the same routing protocol.

Upon receiving a data packet, a node has to decide how
to process it. In the Internet architecture this decision is
based on next header fields that are part of each protocol
header. For example, in the next header field of the Ethernet
protocol it is specified whether the next protocol is IPv4,
IPv6, ARP, etc. If the protocol stack is negotiated upfront,
this step by step resolution of the next protocol is not neces-
sary, instead, a single identifier per connection can be used.
This identifier is calculated by the stack builder as follows:
Every functional block has a unique name. In order to obtain
a unique name the inverted url that is associated with the
developer is used. This is similar to the convention for pack-
age names in the Java programming language. The unique
identifier for the overall protocol stack is then obtained by
concatenating the individual names and hashing them. If
the identical protocol is implemented by several develop-
ers, and their implementations pass an interoperability test,
a special interoperability name should be used. Upon packet
reception, the Ethernet functional block checks the hash and
forwards the packet to the corresponding stack “pipeline”.

When the networking conditions change, the self-aware
nodes might want to change the protocol stack to add or re-
move networking functionalities. Identifying a given stack
by a unique identifier is also valuable when changing the
protocol stack on-the-fly. The negotiation of the new pro-

source destination

possible changes

chosen protocol

Ethernet

hash1

APP

FB1

hash2

Ethernet

hash1

APP

Ethernet

hash1

APP

packet 1 (hash1)

Ethernet

hash1

APP

hash2

FB1

packet 3 (hash2)

packet 2 (hash1)

packet 4 (hash2)

t t

Fig. 2. Updating the dynamic protocol stack over time.

tocol is similar to the negotiation for setting up a protocol.
The re-negotiation is executed over the currently used proto-
col. While adapting the protocol stack packets might be re-
ordered on their way from source to destination. Therefore,
special care has to be taken that packets still belonging to the
old stack are not processed by the new stack and vice versa.
Since the hash that identifies a given stack will change when
the protocol stack is changed, also the packets sent over the
new stack will be identified with a different hash. This hash
is used to dispatch the packet either to the new or the old
protocol stack. Figure 2 depicts this change of the protocol
stack.

4. EXPERIMENTAL RESULTS

We implemented the self-aware network node architecture
as a combination of Linux kernel modules (for the network-
ing core) and user-space tools (for monitoring and config-
uration). However, it could be implemented on any other
operating system as well. Our implementation is designed
to scale from small embedded systems up to high-end SMP
servers. Applications interact with the network architecture
over a new BSD socket family that supports the following
socket calls: open, ioctl, sendto, poll, recvfrom, close. A
library is provided that allows for specifying the communi-
cation requirements. The source code of our architecture to-
gether with getting started information is available in github
at http://github.org/epics/reconos.

In order to evaluate the benefits of a self-aware network
architecture, we show how our system autonomously adapts
itself to changing network conditions. We developed a sim-
ple application that mimics a sensor that sends measurement
data periodically to a server. We argue that transmitting a
packet over a wireless interface costs energy, and therefore
should only be performed when necessary. Therefore, we
implemented a stack builder that includes an idle repeat re-
quest (IRR) reliability protocol in the protocol stack, only
when sensors report low link quality. The link quality is de-
termined by a sensor that divides the current with the maxi-
mum possible wireless link quality. Our link-quality-aware
networking architecture is shown in Figure 3.

We evaluated our architecture on commodity notebooks.
In order to obtain reproducible results, we used a wired con-
nection between the test machines and used the Linux traffic
control tool tc with the netem discipline [8] to em-
ulate packet loss. We recorded the link quality between two
nodes while walking around in our office building, see Fig-
ure 4. We have used this recording as realistic input for our
emulation. Simultaneously, we measured that packets got
lost, when the link quality was below 35%.

Our stack builder requests to be notified by the sensor
daemon when the signal strength falls below a threshold of
40% or increases beyond 50%, see Figure 4. Upon such an

http://github.org/epics/reconos

stack
builder

sensor daemon

link quality

passive
sensors

application

physical interface

IRR

networking core

IRR module = reliability

network models

link quality < 35% →
packet loss

ETH
self-adaptation engine

application requirement:
reliable transmission

Fig. 3. Implementation of the node architecture for the link-
quality-aware protocol stack.

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

lin
k
 q

u
a
lit

y
 (

%
)

time in seconds

Fig. 4. Measured link quality over 140 seconds. Packets got
lost when the link quality was below the dashed line. The
DPS is updated when the graph crosses the gray bar.

event, it either inserts the reliability module or it removes
the reliability module, and renegotiates the protocol stack
with the neighboring node. The lower threshold for rene-
gotiation ensures that the reliability protocol is inserted to
the protocol stack before the link quality reaches the critical
value of 35%. The upper threshold is used to avoid frequent
adaptations of the protocol stack.

For evaluation purposes, we compared the data loss rate
and the total number of packets sent for (i) a protocol stack
that dynamically adapts itself to the link quality, (ii) a proto-
col stack that never uses reliability, and (iii) a protocol stack
that always uses reliability. We used these measured values
to emulate the network conditions on a machine that con-
nected the two test machines.

Table 1 summarizes our results. The configuration with
no reliability lost on average 31% of the packets, whereas
we didn’t observe packet loss in the other two configura-
tions. However, this reliability comes at a price. The over-
head (in terms of sent packets) for achieving reliability was

128% for the configuration that was statically configured
to use the reliability protocol. The total overhead for the
dynamic configuration was 100% split in 60% for sending
acknowledgement and retransmission packets and 40% for
sending the protocol stack reconfiguration messages. This
clearly shows that adaptive protocol stacks can reduce the
total communication overhead in dynamic scenarios. How-
ever, the adaptation algorithm has to be designed carefully
to avoid increasing the total overhead by sending too many
stack reconfiguration messages.

Table 1. Comparison between static and autonomous con-
figurations over 140 seconds.

overhead
config. packet loss rate reliability reconfig.

unreliable 31% - -
reliable 0% 128% -

autonomous 0% 60% 40%

We also measured the protocol stack reconfiguration time,
i.e., the time it takes from an event that triggers a reconfig-
uration until data can be sent over the new protocol stack.
This time is composed of (i) the time to determine and re-
configure the stack on both sides of the communication and
(ii) the time to send the reconfiguration messages. We mea-
sured a protocol stack reconfiguration time of 806µs whereof
286µs were required for the transmission of the packets (round
trip time).

5. CONCLUSION

In this paper we presented a novel self-aware network node
architecture. The self-adaptation of the protocol stack is
triggered by combining the sensor input with models and
goals. The currently implemented self-adaptation techniques
allow to insert or remove protocols, such as encryption or
reliability, at run-time. We demonstrated that our self-aware
networking architecture can autonomously adapt its proto-
col stack to varying link qualities without loosing any pack-
ets while reducing the communication overhead (in terms of
sent packets) by 28% compared to a static networking archi-
tecture.

In future work we will focus on more advanced self-
adaptation algorithms and we will apply our architecture to
a smart camera network. The platform for the smart cameras
will be ReconOS [9], which allows us to execute some parts
of the network functionality, such as encryption or compres-
sion algorithms, in hardware, while still being able to freely
compose and adapt the protocol stack.

6. REFERENCES

[1] G. Bouabene, C. Jelger, C. Tschudin, S. Schmid, A. Keller, and
M. May, “The autonomic network architecture (ana),” Selected
Areas in Communications, IEEE Journal on, vol. 28, no. 1, pp.
4–14, Jan. 2010.

[2] A. Keller, D. Borkmann, and W. Mühlbauer, “Efficient im-
plementation of dynamic protocol stacks (poster),” in Proc.
ACM/IEEE Symp. on Architecture for Networking and Com-
munications Systems (ANCS). Washington, DC, USA: IEEE
Computer Society, Oct. 2011, pp. 83–84.

[3] D. L. Tennenhouse and D. J. Wetherall, “Towards an ac-
tive network architecture,” Computer Communication Review,
vol. 26, pp. 5–18, 1996.

[4] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek,
“The click modular router,” ACM Trans. Comput. Syst.,
vol. 18, no. 3, pp. 263–297, 2000.

[5] “netgraph – graph based kernel networking subsystem,”

(accessed in Sept. 2012). [Online]. Available: http://www.
freebsd.org/cgi/man.cgi?query=netgraph\&sektion=4

[6] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan,
and J. Wilcox, “Intelligent design enables architectural evolu-
tion,” in Proc. of the ACM Workshop on Hot Topics in Net-
works, ser. HotNets-X. NY, USA: ACM, 2011, pp. 3:1–3:6.

[7] T. Wolf, J. Griffioen, K. L. Calvert, R. Dutta, G. N. Rouskas,
I. Baldine, and A. Nagurney, “Choice as a principle in network
architecture,” SIGCOMM Comput. Commun. Rev., vol. 42,
no. 4, pp. 105–106, Aug. 2012.

[8] “netem,” (accessed June 2013). [Online].
Available: http://www.linuxfoundation.org/collaborate/
workgroups/networking/netem

[9] E. Lübbers and M. Platzner, “Reconos: Multithreaded pro-
gramming for reconfigurable computers,” ACM Trans. Embed.
Comput. Syst., vol. 9, no. 1, pp. 8:1–8:33, Oct. 2009.

http://www.freebsd.org/cgi/man.cgi?query=netgraph\&sektion=4
http://www.freebsd.org/cgi/man.cgi?query=netgraph\&sektion=4
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

	 Introduction
	 Related Work
	 Self-aware Networking Architecture
	 Node-Local Adaptation
	 Inter-Node Adaptation

	 Experimental Results
	 Conclusion
	 References

